Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (4): 358-364    DOI: 10.11902/1005.4537.2017.160
Current Issue | Archive | Adv Search |
Effect of Cr Content on Oxidation of Ni-based Alloy in Supercritical Water
Dongbai XIE1(), Youyu ZHOU2, Jintao LU3, Wen WANG2, Shenglong ZHU2, Fuhui WANG4
1 Department of Forensic Science, Xinjiang Police College, Urumqi 830011, China
2 Laboratory of Corrosion and Protection, Institue of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 National Energy R&D Center of Clean and High-efficiency Fossil-fired Power Generation Technology, Xi′an Thermal Power Research Institute Co., Ltd., Xi′an 710032, China;
4 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
Download:  HTML  PDF(4276KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The oxidation behavior of three Ni-Fe-Cr alloys with different contents of Cr was studied in supercritical water at 700 ℃ under 25 MPa. Oxidation kinetics was acquired by weighting samples at intervals. After oxidation, the surface and cross-sectional morphologies, and phase compositions of the oxide scales were investigated using SEM/EDS and XRD. The results showed that the high Cr-content enhances the oxidation resistance of Ni-Fe-Cr alloys in supercritical water, i.e. lowering the mass gains and postponing the onset of breakaway oxidation. In supercritical water, the critical concentration of Cr, needed for the formation as well as sustained and steady growth of the protective chromia scale on Ni-Cr-Fe alloys, is higher than that in air. And in supercritical water, the protective Cr-rich oxide scale forms after a short time exposure. However, this protective Cr-rich oxide scale transforms to non-protective scale more easily in the further oxidation process. As exposure time increases, a duplex oxide scale forms on the alloy with low Cr concentration, and Ni-rich oxide exists in between the two oxide layers.

Key words:  Ni-based alloy      Cr content      supercritical water      high temperature oxidation     
Received:  04 October 2017     
ZTFLH:  TG172  
Fund: Supported by Specific Fundamental Research Program for Strengthening Police with Science and Technology of the Ministry of Public Security (2017GABJC11), Research Found of Xi'an Thermal Power Research Institute Co., Ltd. and Open Research Found of Jiangxi Key Laboratory of Surface Engineering

Cite this article: 

Dongbai XIE, Youyu ZHOU, Jintao LU, Wen WANG, Shenglong ZHU, Fuhui WANG. Effect of Cr Content on Oxidation of Ni-based Alloy in Supercritical Water. Journal of Chinese Society for Corrosion and protection, 2018, 38(4): 358-364.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.160     OR     https://www.jcscp.org/EN/Y2018/V38/I4/358

Sample Cr Al Ti Si Mo Nb W Fe Ni Mn
25Cr 25 1.3 1.0 0.05 0.8 1.0 0.5 30 Bal. 0.4
22Cr 22 1.3 1.0 0.05 0.8 1.0 0.5 30 Bal. 0.4
20Cr 20 1.3 1.0 0.05 0.8 1.0 0.5 30 Bal. 0.4
Table 1  Nominal compositions of three nickle-basedalloys (mass fraction / %)
Fig.1  Mass gains of three alloys during oxidation in supercritical water
Fig.2  Surface morpholoigies (a~c) and EDS result of areas I (d), II (e) in Fig.2a and areas III (f), IV (g) in Fig.2b of 25Cr (a, d, f) and 20Cr (b, c, e, g) samples after oxidation in supercritical water for 25 h
Fig.3  Cross-sectional morphology (a) of 25Cr sample after 200 h oxidation in supercritical water and element distributions along the dotted line in Fig.3a (b)
Fig.4  Cross-sectional morphologies (a, b) and line scannings of main elements (c, d) of 22Cr alloy after oxidation in supercritical water for 50 h (a, c) and 200 h (b, d)
Fig.5  Cross section (a) and element profiles (b) of 20Cr alloy after oxidation in supercritical water for 200 h
Fig.6  XRD patterns of the oxides formed on 25Cr (a), 22Cr (b) and 20Cr (c) alloys after oxidation in supercritical water for 50 and 200 h
[1] Qi H J, Wang Y Q.Structural asnalysis of China's electric power energy[J]. Sci-Technol. Manage., 2004, 6(2): 56(齐海江, 王宇奇. 我国发电能源结构分析[J]. 科技与管理, 2004, 6(2): 56)
[2] Yang F.The R&D of heat resistant steel for USC power unit in China [A]. 600/1000MW USC Electric Power Station in China [C]. Yangzhou: China Electric Power Press, 2009: 23(杨富. 加快超超临界机组用新型钢开发确保超超临界机组稳步发展 [A]. 中国电机工程学会600/1000MW超超临界火电机组新型钢国产化研讨会论文集 [C]. 扬州: 中国电机工程学会, 2009: 23)
[3] Zhai S H, Gao X L, Chen G F.Analysis of green power generation technologies[J]. Power Sys. Eng., 2007, 23(1): 9(翟慎会, 高秀丽, 陈桂芳. 环境友好型发电技术的特性分析[J]. 电站系统工程, 2007, 23(1): 9)
[4] Tang F, Dong B, Zhao M.USC unit development and application in China[J]. Electr. Power Constr., 2010, 31(1): 80(唐飞, 董斌, 赵敏. 超超临界机组在我国的发展及应用[J]. 电力建设, 2010, 31(1): 80)
[5] Viswanathan R, Sarver J, Tanzosh J M.Boiler materials for ultra-supercritical coal power plants-Steamside oxidation[J]. J. Mater. Eng. Perform., 2006, 15: 255
[6] Wright I G, Dooley R B.A review of the oxidation behaviour of structural alloys in steam[J]. Int. Mater. Rev., 2010, 55: 129
[7] Berthod P, Aranda L, Mathieu S, et al.Influence of water vapour on the rate of oxidation of a Ni-25wt.% Cr alloy at high temperature[J]. Oxid. Met., 2013, 79: 517
[8] Abraham M A, Sunol A K.ACS Symposium Series 670, Supercritical Fluid Extraction and Pollution Prevention[M]. Washington, DC: American Chemical Society, 1997: 242
[9] Faust R, Shaffer T D.ACS Symposium Series 665, Cationic Polymerization Fundamentals and Applications[M]. Washington, DC: American Chemical Society, 1997: 242
[10] Degradation in supercritical water oxidation systems [R]. New Orleans, LA, USA: Am. Chem. Soc., Div. Ind. &Degradation in supercritical water oxidation systems [R]. New Orleans, LA, USA: Am. Chem. Soc., Div. Ind. & Eng. Chem. Inc., 1997
[11] Mougin J, Lucazeau G, Galerie A, et al.Influence of cooling rate and initial surface roughness on the residual stresses in chromia scales thermally grown on pure chromium[J]. Mater. Sci. Eng., 2001, A308: 118
[12] Chao J, González-Carrasco J L. The role of the surface roughness on the integrity of thermally generated oxide scales. Application to the Al2O3/MA956 system[J]. Mater. Sci. Eng., 1997, A230A: 39
[13] Kritzer P.Corrosion in high-temperature and supercritical water and aqueous solutions: A review[J]. J. Supercrit. Fluids, 2004, 29: 1
[14] Plugatyr A, Svishchev I M.Residence time distribution measurements and flow modeling in a supercritical water oxidation reactor: Application of transfer function concept[J]. J. Supercrit. Fluids, 2008, 44: 31
[15] Kritzer P, Boukis N, Dinjus E.Review of the corrosion of nickel-based alloys and stainless steels in strongly oxidizing pressurized high-temperature solutions at subcritical and supercritical temperatures[J]. Corrosion, 2000, 56: l093
[16] Machet A, Galtayries A, Zanna S, et al.XPS and STM study of the growth and structure of passive films in high temperature water on a nickel-base alloy[J]. Electrochim. Acta, 2004, 49: 3957
[17] Li M S.High Temperature Corrosion of Metal [M]. Beijing: Metallurgical Industry Press, 2001: 186(李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001: 186)
[18] Zhou C G, Yu J S, Gong S K, et al.Influence of water vapor on the isothermal oxidation behavior of low pressure plasma sprayed NiCrAlY coating at high temperature[J]. Surf. Coat. Technol., 2002, 161: 86
[19] Wu Y, Narita T.Oxidation behavior of the single crystal Ni-based superalloy at 900 ℃ in air and water vapor[J]. Surf. Coat. Technol., 2007, 202: 140
[20] Hänsel M, Quadakkers W J, Young D J.Role of water vapor in chromia-scale growth at low oxygen partial pressure[J]. Oxid. Met., 2003, 59: 285
[21] Asteman H, Svensson J E, Johansson L G, et al.Indication of chromium oxide hydroxide evaporation during oxidation of 304L at 873 K in the presence of 10% water vapor[J]. Oxid. Met., 1999, 52: 95
[22] Yuan J T, Wang W, Zhang H H, et al.Investigation into the failure mechanism of chromia scale thermally grown on an austenitic stainless steel in pure steam[J]. Corros. Sci., 2016, 109: 36
[23] Lobnig R E, Schmidt H P, Hennesen K, et al.Diffusion of cations in chromia layers grown on iron-base alloys[J]. Oxid. Met., 1992, 37: 81
[24] Tan L, Ren X, Sridharan K, et al.Corrosion behavior of Ni-base alloys for advanced high temperature water-cooled nuclear plants[J]. Corros. Sci., 2008, 50: 3056
[25] Huang J B, Wu X Q, Han E-H.Electrochemical properties and growth mechanism of passive films on alloy 690 in high-temperature alkaline environments[J]. Corros. Sci., 2010, 52: 3444
[26] Birks N, Meier G H, Pettit F S.Introduction to the High-Temperature Oxidation of Metals [M]. Cambridge: Cambridge University Press, 2006
[1] LIU Xiao, WANG Hai, ZHU Zhongliang, LI Ruitao, CHEN Zhenyu, FANG Xudong, XU Fanghong, ZHANG Naiqiang. Oxidation Characteristics of Austenitic Heat-resistant Steel HR3C and Sanicro25 in Supercritical Water for Power Station[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
[2] XIE Dongbai, HONG Hao, WANG Wen, PENG Xiao, DUO Shuwang. Oxidation Behavior of Stainless Steel 1Cr11Ni2W2MoV in a Simulated Kerosene Combustion Environment[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[3] FANG Xudong, LIU Xiao, XU Fanghong, LI Ruitao, ZHU Zhongliang, ZHANG Naiqiang. Oxidation Behavior in Supercritical Water of Domestic Austenitic Steel C-HRA-5 for Uultra-supercritical Power Stations[J]. 中国腐蚀与防护学报, 2020, 40(3): 266-272.
[4] XU Xunhu,HE Cuiqun,XIANG Junhuai,WANG Ling,ZHANG Honghua,ZHENG Xiaodong. High Temperature Oxidation Behavior of Co-20Re-25Cr-1Si Alloy in 0.1 MPa Pure Oxygen[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[5] AI Peng,LIU Lixiang,LI Xiaogang,JIANG Wentao. Influence of TiAlSiN Coatings on High Temperature Oxidation Resistance of γ-TiAl Based Alloys[J]. 中国腐蚀与防护学报, 2019, 39(4): 306-312.
[6] Junjie XIA,Hongzhi NIU,Min LIU,Huazhen CAO,Guoqu ZHENG,Liankui WU. Enhancement of High Temperature Oxidation Resistance of Ti48Al5Nb Alloy via Anodic Anodization in NH4F Containing Ethylene Glycol[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[7] Dongbai XIE,Youyu ZHOU,Jintao LU,Wen WANG,Shenglong ZHU,Fuhui WANG. Effect of Al/Si Content on Corrosion of Ni-based Alloys in Supercritical Water[J]. 中国腐蚀与防护学报, 2019, 39(1): 68-76.
[8] Ling WANG,Junhuai XIANG,Honghua ZHANG,Songlin QIN. High Temperature Oxidation Behavior of Three Co-20Re-xCr Alloys in 3.04×10-5 Pa Oxygen at 1000 and 1100 ℃[J]. 中国腐蚀与防护学报, 2019, 39(1): 83-88.
[9] Yue LI, Jian WANG, Yong ZHANG, Jingang BAI, Yadi HU, Yongfeng QIAO, Caili ZHANG, Peide HAN. Analysis of Initial Oxidation Process of 2205 Duplex Stainless Steel in Closed Container at High Temperature[J]. 中国腐蚀与防护学报, 2018, 38(3): 296-302.
[10] Zhan ZHAO,Jingyang LI,Jianxin DONG,Zhihao YAO,Maicang ZHANG. Oxidation Behavior during High Temperature Homo-genization Treatment of Cast Ni-Fe Based Corrosion Resistant 925 Alloy[J]. 中国腐蚀与防护学报, 2017, 37(1): 1-8.
[11] Dongbai XIE,Guo SHAN. Rapid Identification of Liquid Accelerant in Fire Scene Environment[J]. 中国腐蚀与防护学报, 2017, 37(1): 74-80.
[12] Tiantian YANG,Jingjun XU,Yuhai QIAN,Meishuan LI. Preparation and Ultra-high Temperature Oxidation Resistance of Micro-laminated ZrC/MoSi2 Coating on Siliconized Graphite[J]. 中国腐蚀与防护学报, 2016, 36(5): 476-482.
[13] Jiapeng HUANG,Bin YANG,Hang WANG. Effect of Multiple Addition of Y, La and Ce on Oxidation Behavior of Ni-10Cr-5Al Alloy at 1000 ℃ in Air[J]. 中国腐蚀与防护学报, 2016, 36(5): 489-496.
[14] SHEN Zhao, ZHANG Lefu, ZHU Fawen, BAO Yichen. Corrosion Behavior of Candidate SCWR Fuel Cladding Materials[J]. 中国腐蚀与防护学报, 2014, 34(4): 301-306.
[15] YUAN Juntao, WANG Wen, ZHU Shenglong, WANG Fuhui. Oxidation Behavior of Super 304H Steel in Steam at 700~900 ℃[J]. 中国腐蚀与防护学报, 2014, 34(3): 218-224.
No Suggested Reading articles found!