|
|
Fabrication of Amphiphobic Surface of Pipeline Steel by Acid Etching and Its Anti-corrosion Properties |
Jidong REN,Rongjie GAO( ),Yu ZHANG,Yong LIU,Tian DING |
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China |
|
|
Abstract Pipeline steel has been widely used in modern industry such as the transportation of natural gas and oil. However, its service life is mainly affected by the corrosion because of its hydrophilic and oleophilic properties. In this study, the surface of X80 pipeline steel was converted to be of super-hydrophobicity and oleophobicity by acid etching and fluoride modification. The steel was first etched by a mixed acid solution to roughen its surface, and then modified with a kind of low surface energy material, 1H, 1H, 2H, 2H-Perfluorodecyltriethoxysilane. The fluoride modification can reduce the surface energy, which is an essential step to prepare the amphiphobic surface. The influence of acid etching and modification on the morphology and the wetting behavior of the modified surface was characterized and the corrosion behavior of the amphiphobic surface was studied by potentiodynamic scanning. The result showed that the modified amphiphobic surface exhibits excellent both of hydrophobicity and oleophobicity, for substances such as water, glycerin and ethylene glycol, as well as hexadecane. After 4 h etching and fluoride modification, the contact angles of the modified steel with deionized water, glycerin, ethylene glycol and hexadecane were 161°, 156°, 151.5° and 146° respectively. The modified surface can enhance the corrosion resistance of the pipeline steel and such amphiphobic surface can be easily repaired.
|
Received: 25 January 2016
|
[1] | Liu K S, Tian Y, Jiang L.Bio-inspired superoleophobic and smart materials: Design, fabrication, and application[J]. Prog. Mater. Sci., 2013, 58: 503 | [2] | Barthwal S, Lim S H.Fabrication of long-term stable superoleophobic surface based on copper oxide/cobalt oxide with micro-nanoscale hierarchical roughness[J]. Appl. Surf. Sci., 2015, 328: 296 | [3] | Genzer J, Efimenko K.Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers[J]. Science, 2000, 290: 2130 | [4] | Yoshimitsu Z, Nakajima A, Watanabe T, et al.Effects of surface structure on the hydrophobicity and sliding behavior of water droplets[J]. Langmuir, 2002, 18: 5818 | [5] | Singh S, Houston J, van Swol F V, Brinker C J. Superhydrophobicity: Drying transition of confined water[J]. Nature, 2006, 442: 526 | [6] | Gao X F, Yao X, Jiang L.Effects of rugged nanoprotrusions on the surface hydrophobicity and water adhesion of anisotropic micropatterns[J]. Langmuir, 2007, 23: 4886 | [7] | Deng X, Mammen L, Butt H J, et al.Candle soot as a template for a transparent robust superamphiphobic coating[J]. Science, 2012, 335: 67 | [8] | Tuteja A, Choi W, Ma M L, et al.Designing superoleophobic surfaces[J]. Science, 2007, 318: 1618 | [9] | Blossey R.Self-cleaning surfaces—virtual realities[J]. Nat. Mater., 2003, 2: 301 | [10] | Xiu Y H, Zhu L B, Hess D W, et al.Hierarchical silicon etched structures for controlled hydrophobicity/superhydrophobicity[J]. Nano Lett., 2007, 7: 3388 | [11] | Yuan Z Q, Xiao J Y, Wang C Q, et al.Preparation of a superamphiphobic surface on a common cast iron substrate[J]. J. Coat. Technol. Res., 2011, 8: 773 | [12] | Li J, Liu X H, Ye Y P, et al.Fabrication of superhydrophobic CuO surfaces with tunable water adhesion[J]. J. Phys. Chem., 2011, 115C: 4726 | [13] | Qiu R, Zhang D, Wang P.Superhydrophobic-carbon fibre growth on a zinc surface for corrosion inhibition[J]. Corros. Sci., 2013, 66: 350 | [14] | Liu C S, Su F H, Liang J Z.Facile fabrication of a robust and corrosion resistant superhydrophobic aluminum alloy surface by a novel method[J]. RSC Adv., 2014, 4: 55556 | [15] | Badre C, Pauporté T, Turmine M, et al.Tailoring the wetting behavior of zinc oxide films by using alkylsilane self-assembled monolayers[J]. Superlattices Microstruct., 2007, 42: 99 | [16] | Sun T L, Feng L, Gao X F, et al.Bioinspired surfaces with special wettability[J]. Accounts Chem. Res., 2005, 38: 644 | [17] | Chen X H, Kong L H, Dong D, et al.Fabrication of functionalized copper compound hierarchical structure with bionic superhydrophobic properties[J]. J. Phys. Chem., 2009, 113C: 5396 | [18] | Nosonovsky M.Multiscale roughness and stability of superhydrophobic biomimetic interfaces[J]. Langmuir, 2007, 23: 3157 | [19] | Jin C D, Li J P, Han S J, et al.A durable, superhydrophobic, superoleophobic and corrosion-resistant coating with rose-like ZnO nanoflowers on a bamboo surface[J]. Appl. Surf. Sci., 2014, 320: 322 | [20] | Nishino T, Meguro M, Nakamae K, et al.The lowest surface free energy based on-CF3 alignment[J]. Langmuir, 1999, 15: 4321 | [21] | Wu X D, Zheng L J, Wu D.Fabrication of superhydrophobic surfaces from microstructured ZnO-based surfaces via a wet-chemical route[J]. Langmuir, 2005, 21: 2665 | [22] | Tian H, Yang T S, Chen Y Q.Fabrication and characterization of superhydrophobic thin films based on TEOS/RF hybrid[J]. Appl. Surf. Sci., 2009, 255: 4289 | [23] | Li H J, Wang X B, Song Y L, et al.Super-“amphiphobic” aligned carbon nanotube films[J]. Angew. Chem.-Int. Edit., 2001, 40: 1743 | [24] | Nicolas M, Guittard F, Géribaldi S.Synthesis of stable super water- and oil-repellent polythiophene films[J]. Angew. Chem.-Int. Edit., 2006, 45: 2251 | [25] | Feng L, Li S H, Li Y S, et al.Super-hydrophobic surfaces: From natural to artificial[J]. Adv. Mater., 2002, 14: 1857 | [26] | Zhu X T, Zhang Z Z, Xu X H, et al.Facile fabrication of a superamphiphobic surface on the copper substrate[J]. J. Colloid Interface Sci., 2012, 367: 443 | [27] | Li H, Rong S R, Liu E Y, et al.Fabrication and characterization of bionic amphiphobic functional surface on X70 pipeline steel[J]. Microsyst. Technol., 2015, 21: 2003 | [28] | Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Trans. Faraday Soc., 1944, 40: 546 | [29] | Wenzel R N.Resistance of solid surfaces to wetting by water[J]. Ind. Eng. Chem., 1936, 28: 988 | [30] | Gao L C, McCarthy T J. Ionic liquids are useful contact angle probe fluids[J]. J. Am. Chem. Soc., 2007, 129: 3804 | [31] | Xie Q, Xu J, Feng L, et al.Facile creation of a super-amphiphobic coating surface with bionic microstructure[J]. Adv. Mater., 2004, 16: 302 | [32] | Wang P, Zhang D, Qiu R, et al.Super-hydrophobic film prepared on zinc and its effect on corrosion in simulated marine atmosphere[J]. Corros. Sci., 2013, 69: 23 | [33] | Song J L, Xu W J, Lu Y, et al.Fabrication of superhydrophobic surfaces on Mg alloy substrates via primary cell corrosion and fluoroalkylsilane modification[J]. Mater. Corros., 2013, 64: 979 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|