Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (2): 119-124    DOI: 10.11902/1005.4537.2013.085
Original Article Current Issue | Archive | Adv Search |
Oxidation Behavior of Ferritic-martensitic Steel P92 Exposed to Supercritical Water at 600 ℃/25 MPa
XU Hong, YUAN Jun, ZHU Zhongliang, ZHANG Qian, ZHANG Naiqiang
Key Laboratory of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education, North China Electric Power University, Beijing 102206, China
Download:  HTML  PDF(2656KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The oxidation behavior of ferritic-martensitic P92 steel was studied in supercritical waters containing different dissolved oxygen of 0, 100 and 300 μg/L at 600 ℃ under 25 MPa. The results show that a typical double-layered oxide scale is formed on all the samples, which consists an outer layer Fe-rich magnetite and an inner layer Cr-rich Fe-Cr spinel. Cracks on the surface of oxide scales are found at the initial oxidation stage, which is different from the experimental phenomenon in supercritical water at 550 ℃. A distinct gap between inner oxide layer and substrate alloy is observed in some regions of the sample which is exposed to the supercritical water containing 300 μg/L dissolved oxygen. The mechanism concerning the influence of dissolved oxygen on oxidation behavior and the gap formation is further discussed.
Key words:  P92 steel      oxidation      supercritical water      dissolved oxygen     
Received:  07 June 2013     
ZTFLH:  TK224  
  TM621  

Cite this article: 

XU Hong, YUAN Jun, ZHU Zhongliang, ZHANG Qian, ZHANG Naiqiang. Oxidation Behavior of Ferritic-martensitic Steel P92 Exposed to Supercritical Water at 600 ℃/25 MPa. Journal of Chinese Society for Corrosion and protection, 2014, 34(2): 119-124.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.085     OR     https://www.jcscp.org/EN/Y2014/V34/I2/119

[1] Archer C L, Jacobsen M Z. A technology roadmap for Generation IV nuclear energy systems [A]. U.S. DOE Nuclear Energy Research Advisory Committee and the Generation IV Internationa1 Forum [C]. Washington: 2002, 69-70
[2] Shaw R W, Brill T B, Clifford A A, et al. Supercritical water: Amedium for chemistry [J]. Chem. Eng. News, 1991, 69: 26-39
[3] Kritzer P. Corrosion in high-temperature and supercritical water and aqueous solutions: a review [J]. J. Supercrit. Fluids, 2004, 29(1/2): 1-29
[4] Jia J M, Chen J G, Tang L Y, et al. Investigation on microstructure and morphology features of steam-side oxidation scale and exfoliated oxide from the internal surface of 12X18H12T tube [J]. Proc. Chin. Soc. Elect. Eng., 2008, 28(17): 43-48
(贾建民, 陈吉刚, 唐丽英等. 12X18H12T钢管蒸汽侧氧化皮及其剥落物的微观结构与形貌特征 [J]. 中国电机工程学报, 2008, 28(17): 43-48)
[5] Chen Y, Sridharan K, Allen T R. Corrosion behavior of ferritic-martensitic steel T91 in supercritical water [J]. Corros. Sci., 2006, 48: 2843-2854
[6] Ren X, Sridharan K, Allen T R. Corrosion of ferritic- martensitic steel HT9 in supercritical water [J]. J. Nucl. Mater., 2006, 358: 227-234
[7] Ren X W. Corrosion of ferritic-martensitic steels and Ni-based alloys in supercritical water [D]. Madison: University of Wisconsin-Madison, 2008
[8] Tan L, Yang Y, Allen T R. Oxidation behavior of iron-based alloy HCM12A exposed in supercritical water [J]. Corros. Sci., 2006, 48: 3123-3138
[9] Was G S, Ampornrat P, Gupta G, et al. Corrosion and stress corrosion cracking in supercritical water [J]. J. Nucl. Mater., 2007, 371:176-201
[10] Was G S, Allen T R. Time, temperature and dissolved oxygen dependence of oxidation of austenitic and ferritic-martensitic alloys in supercritical water [A]. Proceedings of ICAPP'05 [C]. Seoul: 2005, Paper 5690
[11] Ampornrat P, Was G S. Oxidation of ferritic-martensitic alloys T91,HCM12A and HT-9 in supercritical water [J]. J. Nucl. Mater., 2007, 371: 1-17
[12] Ampornrat P, Bahn C B, Was G S. Corrosion and stress corrosion cracking of ferritic-martensitic alloys in supercritical water [A]. Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System-Water Reactors-TMS [C]. Salt Lake: 2005, 1387-1395
[13] Yin K J, Qiu S Y, Tang R, et al. Corrosion behavior of steel P92 in supercritical water [J]. Corros. Prot., 2010, 31(5): 334-337
(尹开锯, 邱绍宇, 唐睿等. P92 钢在超临界水中的腐蚀行为 [J]. 腐蚀与防护, 2010, 31(5): 334-337)
[14] Yin K J, Qiu S Y, Tang R, et al. Characterization of the porosity of the oxide scales on feeritic-martensitic steel P91 and P92 exposed in supercritical water [J]. J. Chin. Soc. Corros. Prot., 2010, 30(1): 1-5
(尹开锯, 邱绍宇, 唐睿等. 铁素体-马氏体钢P91和P92在超临界水中腐蚀后氧化膜多孔性分析 [J]. 中国腐蚀与防护学报, 2010, 30(1): 1-5)
[15] Zhu F W, Zhang L F, Tang R, et al. Corrosion behavior of ferritic-martensitic steel P92 in supercritical water [J]. At. Energy Sci. Technol., 2010, 44(8): 979-983
(朱发文, 张乐福, 唐睿等. 铁素体马氏体钢P92在超临界水中的腐蚀性能 [J]. 原子能科学技术, 2010, 44(8): 979-983)
[16] Zhu F W, Zhang L F, Qiao P P, et al. Corrosion behaviors of candidate materials for supercritical-cooled water reactor [J]. Nucl. Power Eng., 2009, 30(5): 62-66
(朱发文, 张乐福, 乔培鹏等. 超临界水堆候选材料的腐蚀特性研究 [J]. 核动力工程, 2009, 30(5): 62-66)
[17] Zhang N Q, Xu H, Li B R, et al. Influence of the dissolved oxygen content on corrosion of the ferritic-martensitic steel P92 in supercritical water [J]. Corros. Sci., 2012, 56: 123-128
[18] Zhang N Q, Xu H, Bai Y, et al. Influence of dissolved oxygen concentration on oxidation of low alloy steel T24 exposed to supercritical water [J]. Proc. Chin. Soc. Elect. Eng., 2011, 31(35): 123-128
(张乃强, 徐鸿, 白杨等. 溶解氧浓度对低合金钢T24在超临界水中氧化的影响 [J]. 中国电机工程学报, 2011, 15(12): 123-128)
[19] Zhang N Q, Bai Y, Yuan X N, et al. Corrosion behavior of austenitic and ferritic/martensitic steels exposed in supercritical water with dissolved oxygen [J]. Appl. Mech. Mater., 2011, 71-78: 2916-2919
[20] Zhang N Q, Li B R, Bai Y, et al. Oxidation of austenitic Steel TP347HFG exposed to supercritical water with different dissolved oxygen concentration [J]. Appl. Mech. Mater., 2011, 148/149: 1179-1183
[21] Chen H W, Li Y H, Liang H Z. Experimental study on boiler high temperature corrosion [J]. Proc. Chin. Soc. Elect. Eng., 2003, 23(1): 167-170
(陈鸿伟, 李永华, 梁化忠. 锅炉高温腐蚀实验研究 [J]. 中国电机工程学报, 2003, 23(1): 167-170)
[22] Cheng J F, Xu M H, Zeng H C, et al. A study of oxidation dynamics of chromium at high temperature [J]. Proc. Chin. Soc. Elect. Eng., 2002, 22(8): 135-138
(程俊峰, 徐明厚, 曾汉才等. 高温下Cr的氧化动力学研究 [J]. 中国电机工程学报, 2002, 22(8): 135-138)
[23] Dooley R B. Cycle chemistry guidelines for fossil plants:oxygenated treatment [R]. Palo Alto, California:Electric Power Research Institute, 2005: 2-28
[24] Xi'an thermal power research institute Co., Ltd. DL/T 912-2005 Quality criterion of water and steam for supercritical pressure units in fossil fuel power plant [S]. Beijing: China national Development and Reform Commission, 2005
(西安热工研究院有限公司. DL/T 912-2005 超临界火力发电机组水汽质量标准 [S]. 北京: 中华人民共和国国家发展和改革委员会, 2005)
[25] Jiang H J, Chen R J. Research on quality control technology of steam and water for ultra supercritical units [R]. Beijing: Huaneng Power International, INC, 2005
(蒋浩君, 陈仁杰. 超超临界机组电站汽水品质控制技术研究 [R]. 北京: 华能国际股份有限公司, 2005)
[26] Fujii C T, Meussner R A. Oxide structures produced on iron-chromium alloys by a dissociative mechanism [J]. J. Electrochem. Soc., 1963, 110: 1195-1204
[27] Ehlers J, Young D J, Smaardijk E J, et al. Enhanced oxidation of the 9% Cr steel P91 in water vapour containing environments [J]. Corros. Sci., 2006, 48: 3428-3454
[28] Othman N K, Zhang J, Young D J. Temperature and water vapour effects on the cyclic oxidation behaviour of Fe-Cr alloys [J]. Corros. Sci., 2010, 52: 2827-2836
[1] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[2] SUN Haijing, QIN Ming, LI Lin. Performance of Al-Zn-In-Mg-Ti Sacrificial Anode in Simulated Low Dissolved Oxygen Deep Water Environment[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[3] LIU Xiao, WANG Hai, ZHU Zhongliang, LI Ruitao, CHEN Zhenyu, FANG Xudong, XU Fanghong, ZHANG Naiqiang. Oxidation Characteristics of Austenitic Heat-resistant Steel HR3C and Sanicro25 in Supercritical Water for Power Station[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
[4] XIE Dongbai, HONG Hao, WANG Wen, PENG Xiao, DUO Shuwang. Oxidation Behavior of Stainless Steel 1Cr11Ni2W2MoV in a Simulated Kerosene Combustion Environment[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[5] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[6] FANG Xudong, LIU Xiao, XU Fanghong, LI Ruitao, ZHU Zhongliang, ZHANG Naiqiang. Oxidation Behavior in Supercritical Water of Domestic Austenitic Steel C-HRA-5 for Uultra-supercritical Power Stations[J]. 中国腐蚀与防护学报, 2020, 40(3): 266-272.
[7] ZHENG Yanxin, LIU Ying, SONG Qingsong, ZHENG Feng, JIA Yuchuan, HAN Peide. High-temperature Oxidation Behavior and Wear Resistance of Copper-based Composites with Reinforcers of C, ZrSiO4 and Fe[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[8] XU Xunhu,HE Cuiqun,XIANG Junhuai,WANG Ling,ZHANG Honghua,ZHENG Xiaodong. High Temperature Oxidation Behavior of Co-20Re-25Cr-1Si Alloy in 0.1 MPa Pure Oxygen[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[9] JIANG Dongxue,FU Ying,ZHANG Junwei,ZHANG Wei,XIN Li,ZHU Shenglong,WANG Fuhui. Preparation and Properties of Alumina Ceramic Film on Ti-alloy Surface[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[10] XIAO Jintao,CHEN Yan,XING Mingxiu,JU Pengfei,MENG Yingen,WANG Fang. Effect of Process Parameters on Corrosion Resistance of Anodizing Film on 2195 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[11] AI Peng,LIU Lixiang,LI Xiaogang,JIANG Wentao. Influence of TiAlSiN Coatings on High Temperature Oxidation Resistance of γ-TiAl Based Alloys[J]. 中国腐蚀与防护学报, 2019, 39(4): 306-312.
[12] Yunhai MA. Effect of Shot Peening on Oxidation Resistance of Super 304H Steel in Supercritical Steam[J]. 中国腐蚀与防护学报, 2019, 39(3): 245-252.
[13] Junjie XIA,Hongzhi NIU,Min LIU,Huazhen CAO,Guoqu ZHENG,Liankui WU. Enhancement of High Temperature Oxidation Resistance of Ti48Al5Nb Alloy via Anodic Anodization in NH4F Containing Ethylene Glycol[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[14] Dongbai XIE,Youyu ZHOU,Jintao LU,Wen WANG,Shenglong ZHU,Fuhui WANG. Effect of Al/Si Content on Corrosion of Ni-based Alloys in Supercritical Water[J]. 中国腐蚀与防护学报, 2019, 39(1): 68-76.
[15] Ling WANG,Junhuai XIANG,Honghua ZHANG,Songlin QIN. High Temperature Oxidation Behavior of Three Co-20Re-xCr Alloys in 3.04×10-5 Pa Oxygen at 1000 and 1100 ℃[J]. 中国腐蚀与防护学报, 2019, 39(1): 83-88.
No Suggested Reading articles found!