Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2013, Vol. 33 Issue (5): 363-370    DOI:
Current Issue | Archive | Adv Search |
Corrosion Behavior of 316L Stainless Steel Influenced by Iron-reducing Bacteria Shewanella Algae Biofilms
DU Xiangqian1,2,3, DUAN Jizhou1, ZHAI Xiaofan1,2, LUAN Xin1, ZHANG Jie1, HOU Baorong1
1. Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Jiangsu China Nuclear Industry Huawei Engineering Design and Research Co., Ltd., Nanjing 210019, China
Download:  PDF(2087KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Microbiologically influenced corrosion of 316L stainless steel (316LSS) by iron-reducing bacteria (IRB) Shewanella algae was investigated by means of open circuit potential (OCP) measurement, electrochemical impedance spectroscopy (EIS) and cyclic anodic polarization curves, and scanning electron microscopy and energy dispersive X-ray spectroscopy for characterization of corrosion products. The results showed that after immersion in the IRB containing solution the free corrosion potential of 316LSS shifted negatively; the polarization resistance of 316LSS increased firstly, and then decreased; the presence of IRB reduced the hysteresis loop area of the cyclic anodic polarization curves and also the characteristic potential range of 316LSS, which indicated that IRB inhibited the initiation and propagation of pitting corrosion of 316LSS. The presence of IRB might be beneficial to the formation of biofilms on the surface of 316LSS exposed to in the solution, and therewith the chemical composition and property of the 316LSS surface might be changed by biofilms and metabolites, whilst which resulted in a stronger corrosion inhibition to the 316LSS immersed in the IRB containing solution.
Key words:  316L stainless steel      iron-reducing bacteria (IRB)      Shewanella algae biofilm      microbiologically influenced corrosion inhibition (MICI)     
ZTFLH:  TG172.5  

Cite this article: 

DU Xiangqian,DUAN Jizhou,ZHAI Xiaofan,LUAN Xin,ZHANG Jie,HOU Baorong. Corrosion Behavior of 316L Stainless Steel Influenced by Iron-reducing Bacteria Shewanella Algae Biofilms. Journal of Chinese Society for Corrosion and protection, 2013, 33(5): 363-370.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2013/V33/I5/363

[1] Hamilton W A. Sulfate-reducing bacteria and anaerobic corrosion [J]. Annu. Rev. Microbiol., 1985, 39: 195-217
[2] Antony P, Chongdar S, Kumar P, et al. Corrosion of 2205 duplex stainless steel in chloride medium containing sulfate-reducing bacteria [J]. Electrochim. Acta, 2007, 52(12): 3985-3994
[3] Castaneda H, Benetton X D. SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions [J]. Corros. Sci., 2008, 50(4): 1169-1183
[4] Duan J, Wu S, Zhang X, et al. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater [J]. Electrochim. Acta, 2008, 54(1): 22-28
[5] Malard E, Kervadec D, Gil O, et al. Interactions between steels and sulphide-producing bacteria-Corrosion of carbon steels and low-alloy steels in natural seawater [J]. Electrochim. Acta, 2008, 54(1): 8-13
[6] Cetin D, Aksu M L. Corrosion behavior of low-alloy steel in the presence of Desulfotomaculum sp [J]. Corros. Sci., 2009, 51(8): 1584-1588
[7] Jayaraman A, Earthman J C, Wood T K. Corrosion inhibition by aerobic biofilms on SAE 1018 steel [J]. Appl. Microbiol. Biot., 1997, 47(1): 62-68
[8] Volkland H P, Harms H, Knopf K, et al. Corrosion inhibition of mild steel by bacteria [J]. Biofouling, 2000, 15(4): 287-297
[9] Gunasekaran G, Chongdar S, Gaonkar S N, et al. Influence of bacteria on film formation inhibiting corrosion [J]. Corros. Sci., 2004, 46(8): 1953-1967
[10] Chongdar S, Gunasekaran G, Kumar P. Corrosion inhibition of mild steel by aerobic biofilm [J]. Electrochim. Acta, 2005, 50(24): 4655-4665
[11] Syrett B C, Arps P J, Earthman J C, et al. Corrosion control using regenerative biofilms (CCURB)-An update [A]. Corrosion in Refinery Petrochemical and Power Generation Plants [C]. Venice, 2000: 387-396
[12] Ornek D, Wood T K, Hsu C H, et al. Corrosion control using regenerative biofilms (CCURB) on brass in different media [J]. Corros. Sci., 2002, 44(10): 2291-302
[13] Arps P J, Xu L C, Green R M, et al. Field Evaluation of Corrosion Control Using Regenerative Biofilms (CCURB) [A]. CORROSION/2003 Houston [C]. TX, NACE International, 2003: 03714
[14] Jayaraman A, Cheng E T, Earthman J C, et al. Axenic aerobic biofilms inhibit corrosion of SAE1018 steel through oxygen depletion [J]. Appl. Microbiol. Biot., 1997, 48(1): 11-17
[15] Jayaraman A, Ornek D, Duarte D A, et al. Axenic aerobic biofilms inhibit corrosion of copper and aluminum [J]. Appl. Microbiol. Biot., 1999, 52(6): 787-790
[16] Nagiub A, Mansfeld F. Evaluation of microbiologically influenced corrosion inhibition using electrochemical noise analysis [J]. Corros. Sci., 2001, 43(11): 2001-2009
[17] Nagiub A, Mansfeld F. Evaluation of microbiologically influenced corrosion inhibition (MICI) with EIS and ENA [J]. Electrochim. Acta, 2002, 47(13/14): 2319-2333
[18] Ponmariappan S, Maruthamuthu S, Palaniappan R. Inhibition of Corrosion of Mild Steel by Staphylococcus sp [J]. Transa. SAEST, 2004, 39: 99-108
[19] Ornek D, Jayaraman A, Syrett B C, et al. Pitting corrosion inhibition of aluminum 2024 by Bacillus biofilms secreting polyaspartate or gamma-polyglutamate [J]. Appl. Microbiol. Biot., 2002, 58(5): 651-657
[20] Ornek D, Wood T K, Hsu C H, et al. Pitting corrosion control of aluminum 2024 using protective biofilms that secrete corrosion inhibitors [J]. Corrosion, 2002, 58(9): 761-767
[21] Dubiel M, Hsu C H, Chien C C, et al. Microbial iron respiration can protect steel from corrosion [J]. Appl. Environ. Microb., 2002, 68(3): 1440-1445
[22] Lee A K, Newman D K. Microbial iron respiration: impacts on corrosion processes [J]. Appl. Microbiol. Biot., 2003, 62(2-3): 134-139
[23] Herrera L K, Videla H A. Role of iron-reducing bacteria in corrosion and protection of carbon steel [J]. Int. Biodeter. Biodegr., 2009, 63(7): 891-895
[24] Videla H A, Le B S, Panter C, et al. Mic of steels by iron reducing bacteria [A]. Corrosion/08 NACE International [C]. Houston, 2008: 505
[25] Mehanna M, Basseguy R, Delia M L, et al. Role of direct microbial electron transfer in corrosion of steels [J]. Electrochem. Commun., 2009, 11(3): 568-571
[26] Mehanna M, Basseguy R, Delia M L, et al. Geobacter sulfurreducens can protect 304L stainless steel against pitting in conditions of low electron acceptor concentrations [J]. Electrochem. Commun., 2010, 12(6): 724-728
[27] Mehanna M, Basseguy R, Delia M L, et al. Geobacter species enhances pit depth on 304L stainless steel in a medium lacking with electron donor [J]. Electrochem. Commun., 2009, 11(7): 1476-1481
[28] Xu F L. The foundational investigation of the marine electro-active biofilms and the application in the microorganism fuel cells[D]. Qingdao: Graduate School of Chinese Academy of Sciences (Institute of Oceanology), 2009
(许凤玲. 海洋生物膜的电活性及其在微生物燃料电池中的应用基础研究 [D]. 青岛: 中国科学院研究生院 (海洋研究所), 2009)
[29] Erable B, Duteanu N M, Ghangrekar M M, et al. Application of electro-active biofilms [J]. Biofouling, 2010, 26(1): 57-71
[30] Xu F L, Duan J Z, Hou B R. Electron transfer process from marine biofilms to graphite electrodes in seawater [J]. Bioelectrochemistry, 2010, 78(1): 92-95
[31] Obuekwe C O, Westlake D W S, Cook F D, et al. Surface changes in mild-steel coupons from the action of corrosion-causing bacteria [J]. Appl. Environ. Microb., 1981, 41(3): 766-774
[32] Obuekwe C O, Westlake D W S, Plambeck J A, et al. Corrosion of mild-steel in cultures of ferric iron reducing bacterium isolated from crude-oil. I. Polarization characteristics [J]. Corrosion, 1981, 37(8): 461-467
[33] Obuekwe C O, Westlake D W S, Plambeck J A, et al. Corrosion of mild-steel in cultures of ferric iron reducing bacterium isolated from crude-oil. II. Mechanism of anodic depolarization [J]. Corrosion, 1981, 37(11): 632-637
[34] Little B, Wagner P, Hart K, et al. The role of biomineralization in microbiologically influenced corrosion [J]. Biodegradation, 1998, 9(1): 1-10
[35] Zhang J, Song X X, Luan X, et al. Effects of Shewanella algae on corrosion of Zn-Al-Cd anode [J]. Acta Metall. Sin., 2012, 48(12): 1495-1502
(张杰, 宋秀霞, 栾鑫等. 海藻希瓦氏菌对Zn-Al-Cd牺牲阳极的腐蚀性能影响 [J]. 金属学报, 2012, 48(12): 1495-1502)
[36] Liu B, Duan J Z, Hou B R. Microbiologically influenced corrosion of 316L SS by marine biofilims in seawater [J]. J. Chin. Soc. Corros. Prot., 2012, 32(1): 48-53
(刘彬, 段继周, 侯保荣. 天然海水中微生物膜对316L不锈钢腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2012, 32(1): 48-53)
[37] Cao C N. Corrosion Electrochemistry [M]. Beijing: Chemistry Industry Press, 2004: 248-249
(曹楚南. 腐蚀电化学原理 [M]. 化学工业出版社, 2004: 248-249)
[38] Song S Z. Methods of Corrosion Electrochemistry Re-search [M]. Beijing: Chemistry Industry Press, 1988: 187
(宋诗哲. 腐蚀电化学研究方法 [M]. 化学工业出版社, 1988: 187)
[1] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[2] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[3] Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU, Cuiwei DU. Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[4] Yanliang WANG,Xu CHEN,Jidong WANG,Bo SONG,Dongsheng FAN,Chuan HE. Electrochemical Behavior of 316L Stainless Steel in Borate Buffer Solution with Different pH[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
[5] Jing LIU,Xiaolu LI,Chongwei ZHU,Tao ZHANG,Guanxin ZENG,Guozhe MENG,Yawei SHAO. Prediction of Critical Pitting Temperature of 316L Stainless Steel in Gas Field Environments by Artificial Neutral Network[J]. 中国腐蚀与防护学报, 2016, 36(3): 205-211.
[6] Xiangbin DING,Hua SUN,Guojun YU,Xingtai ZHOU. Corrosion Behavior of Hastelloy N and 316L Stainless Steel in Molten LiF-NaF-KF[J]. 中国腐蚀与防护学报, 2015, 35(6): 543-548.
[7] Zhiming ZHANG,Qingjiao PENG,Jianqiu WANG,En-Hou HAN,Wei KE. Stress Corrosion Cracking Behavior of Forged 316L Stainless Steel Used for Nuclear Power Plants in Alkaline Solution at 330 ℃[J]. 中国腐蚀与防护学报, 2015, 35(3): 205-212.
[8] CHEN Yu, CHEN Xu, LIU Tong, WANG Guanfu, WANG Yanliang. Effect of Potential on Electrochemical Corrosion Behavior of 316L Stainless Steel in Borate Buffer Solution[J]. 中国腐蚀与防护学报, 2015, 35(2): 137-143.
[9] CHANG Qinpeng, CHEN Youyuan, SONG Fang, PENG Tao. Corrosion Properties of B30 Cu-Ni Alloy and 316L Stainless Steel in a Heat Pump System[J]. 中国腐蚀与防护学报, 2014, 34(6): 544-549.
[10] NIE Yuanyuan, DUAN Jizhou, DU Min, HOU Baorong. Influence of NaN3 on Cathodic Oxygen Reduction Induced by Microbe-assisted Catalysis on Surface of 316LSS in Seawater[J]. 中国腐蚀与防护学报, 2014, 34(4): 359-365.
[11] DUAN Zhengang, ZHANG Lefu, WANG Li, XU Xuelian, SHI Xiuqiang. Effect of Zn Addition on Composition of Oxide Scales Formed on 316L Stainless Steel in High-temperatureand High-pressured Water[J]. 中国腐蚀与防护学报, 2014, 34(3): 249-252.
[12] TAN Yu,LIANG Kexin,ZHANG Shenghan. Photo-electrochemical Study on Semiconductor Properties of Oxide Films Formed on 316L Stainless Steel in High Temperature Water[J]. 中国腐蚀与防护学报, 2013, 33(6): 491-495.
[13] PENG Qingjiao, ZHANG Zhiming,WANG Jianqiu, HAN En-Hou, KE Wei. INFLUENCE OF DISSOLVED HYDROGEN ON OXIDATION OF STAINLESS STEEL 316L IN SIMULATED PWR PRIMARY WATER[J]. 中国腐蚀与防护学报, 2012, 32(3): 217-222.
[14] LIU Bin, DUAN Jizhou, HOU Baorong. MICROBIOLOGICALLY INFLUENCED CORROSION OF 316L SS BY MARINE BIOFILMS IN SEAWATER[J]. 中国腐蚀与防护学报, 2012, 32(1): 48-53.
[15] GUO Jinbiao, CHEN Zhen, WANG Lu, ZHANG Ting. EFFECT OF A SMALL CONTENT OF NITRIC ACID ON CORROSION MECHANISM OF 316L & HASTELLOY C  ALLOY IN CIRCULAR DISPOSAL ACID[J]. 中国腐蚀与防护学报, 2011, 31(2): 121-124.
No Suggested Reading articles found!