|
|
Corrosion Behavior of 316L Stainless Steel Influenced by Iron-reducing Bacteria Shewanella Algae Biofilms |
DU Xiangqian1,2,3, DUAN Jizhou1, ZHAI Xiaofan1,2, LUAN Xin1, ZHANG Jie1, HOU Baorong1 |
1. Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Jiangsu China Nuclear Industry Huawei Engineering Design and Research Co., Ltd., Nanjing 210019, China |
|
|
Abstract Microbiologically influenced corrosion of 316L stainless steel (316LSS) by iron-reducing bacteria (IRB) Shewanella algae was investigated by means of open circuit potential (OCP) measurement, electrochemical impedance spectroscopy (EIS) and cyclic anodic polarization curves, and scanning electron microscopy and energy dispersive X-ray spectroscopy for characterization of corrosion products. The results showed that after immersion in the IRB containing solution the free corrosion potential of 316LSS shifted negatively; the polarization resistance of 316LSS increased firstly, and then decreased; the presence of IRB reduced the hysteresis loop area of the cyclic anodic polarization curves and also the characteristic potential range of 316LSS, which indicated that IRB inhibited the initiation and propagation of pitting corrosion of 316LSS. The presence of IRB might be beneficial to the formation of biofilms on the surface of 316LSS exposed to in the solution, and therewith the chemical composition and property of the 316LSS surface might be changed by biofilms and metabolites, whilst which resulted in a stronger corrosion inhibition to the 316LSS immersed in the IRB containing solution.
|
|
|
Cite this article:
DU Xiangqian,DUAN Jizhou,ZHAI Xiaofan,LUAN Xin,ZHANG Jie,HOU Baorong. Corrosion Behavior of 316L Stainless Steel Influenced by Iron-reducing Bacteria Shewanella Algae Biofilms. Journal of Chinese Society for Corrosion and protection, 2013, 33(5): 363-370.
URL:
https://www.jcscp.org/EN/ OR https://www.jcscp.org/EN/Y2013/V33/I5/363
|
[1] Hamilton W A. Sulfate-reducing bacteria and anaerobic corrosion [J]. Annu. Rev. Microbiol., 1985, 39: 195-217 [2] Antony P, Chongdar S, Kumar P, et al. Corrosion of 2205 duplex stainless steel in chloride medium containing sulfate-reducing bacteria [J]. Electrochim. Acta, 2007, 52(12): 3985-3994 [3] Castaneda H, Benetton X D. SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions [J]. Corros. Sci., 2008, 50(4): 1169-1183 [4] Duan J, Wu S, Zhang X, et al. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater [J]. Electrochim. Acta, 2008, 54(1): 22-28 [5] Malard E, Kervadec D, Gil O, et al. Interactions between steels and sulphide-producing bacteria-Corrosion of carbon steels and low-alloy steels in natural seawater [J]. Electrochim. Acta, 2008, 54(1): 8-13 [6] Cetin D, Aksu M L. Corrosion behavior of low-alloy steel in the presence of Desulfotomaculum sp [J]. Corros. Sci., 2009, 51(8): 1584-1588 [7] Jayaraman A, Earthman J C, Wood T K. Corrosion inhibition by aerobic biofilms on SAE 1018 steel [J]. Appl. Microbiol. Biot., 1997, 47(1): 62-68 [8] Volkland H P, Harms H, Knopf K, et al. Corrosion inhibition of mild steel by bacteria [J]. Biofouling, 2000, 15(4): 287-297 [9] Gunasekaran G, Chongdar S, Gaonkar S N, et al. Influence of bacteria on film formation inhibiting corrosion [J]. Corros. Sci., 2004, 46(8): 1953-1967 [10] Chongdar S, Gunasekaran G, Kumar P. Corrosion inhibition of mild steel by aerobic biofilm [J]. Electrochim. Acta, 2005, 50(24): 4655-4665 [11] Syrett B C, Arps P J, Earthman J C, et al. Corrosion control using regenerative biofilms (CCURB)-An update [A]. Corrosion in Refinery Petrochemical and Power Generation Plants [C]. Venice, 2000: 387-396 [12] Ornek D, Wood T K, Hsu C H, et al. Corrosion control using regenerative biofilms (CCURB) on brass in different media [J]. Corros. Sci., 2002, 44(10): 2291-302 [13] Arps P J, Xu L C, Green R M, et al. Field Evaluation of Corrosion Control Using Regenerative Biofilms (CCURB) [A]. CORROSION/2003 Houston [C]. TX, NACE International, 2003: 03714 [14] Jayaraman A, Cheng E T, Earthman J C, et al. Axenic aerobic biofilms inhibit corrosion of SAE1018 steel through oxygen depletion [J]. Appl. Microbiol. Biot., 1997, 48(1): 11-17 [15] Jayaraman A, Ornek D, Duarte D A, et al. Axenic aerobic biofilms inhibit corrosion of copper and aluminum [J]. Appl. Microbiol. Biot., 1999, 52(6): 787-790 [16] Nagiub A, Mansfeld F. Evaluation of microbiologically influenced corrosion inhibition using electrochemical noise analysis [J]. Corros. Sci., 2001, 43(11): 2001-2009 [17] Nagiub A, Mansfeld F. Evaluation of microbiologically influenced corrosion inhibition (MICI) with EIS and ENA [J]. Electrochim. Acta, 2002, 47(13/14): 2319-2333 [18] Ponmariappan S, Maruthamuthu S, Palaniappan R. Inhibition of Corrosion of Mild Steel by Staphylococcus sp [J]. Transa. SAEST, 2004, 39: 99-108 [19] Ornek D, Jayaraman A, Syrett B C, et al. Pitting corrosion inhibition of aluminum 2024 by Bacillus biofilms secreting polyaspartate or gamma-polyglutamate [J]. Appl. Microbiol. Biot., 2002, 58(5): 651-657 [20] Ornek D, Wood T K, Hsu C H, et al. Pitting corrosion control of aluminum 2024 using protective biofilms that secrete corrosion inhibitors [J]. Corrosion, 2002, 58(9): 761-767 [21] Dubiel M, Hsu C H, Chien C C, et al. Microbial iron respiration can protect steel from corrosion [J]. Appl. Environ. Microb., 2002, 68(3): 1440-1445 [22] Lee A K, Newman D K. Microbial iron respiration: impacts on corrosion processes [J]. Appl. Microbiol. Biot., 2003, 62(2-3): 134-139 [23] Herrera L K, Videla H A. Role of iron-reducing bacteria in corrosion and protection of carbon steel [J]. Int. Biodeter. Biodegr., 2009, 63(7): 891-895 [24] Videla H A, Le B S, Panter C, et al. Mic of steels by iron reducing bacteria [A]. Corrosion/08 NACE International [C]. Houston, 2008: 505 [25] Mehanna M, Basseguy R, Delia M L, et al. Role of direct microbial electron transfer in corrosion of steels [J]. Electrochem. Commun., 2009, 11(3): 568-571 [26] Mehanna M, Basseguy R, Delia M L, et al. Geobacter sulfurreducens can protect 304L stainless steel against pitting in conditions of low electron acceptor concentrations [J]. Electrochem. Commun., 2010, 12(6): 724-728 [27] Mehanna M, Basseguy R, Delia M L, et al. Geobacter species enhances pit depth on 304L stainless steel in a medium lacking with electron donor [J]. Electrochem. Commun., 2009, 11(7): 1476-1481 [28] Xu F L. The foundational investigation of the marine electro-active biofilms and the application in the microorganism fuel cells[D]. Qingdao: Graduate School of Chinese Academy of Sciences (Institute of Oceanology), 2009 (许凤玲. 海洋生物膜的电活性及其在微生物燃料电池中的应用基础研究 [D]. 青岛: 中国科学院研究生院 (海洋研究所), 2009) [29] Erable B, Duteanu N M, Ghangrekar M M, et al. Application of electro-active biofilms [J]. Biofouling, 2010, 26(1): 57-71 [30] Xu F L, Duan J Z, Hou B R. Electron transfer process from marine biofilms to graphite electrodes in seawater [J]. Bioelectrochemistry, 2010, 78(1): 92-95 [31] Obuekwe C O, Westlake D W S, Cook F D, et al. Surface changes in mild-steel coupons from the action of corrosion-causing bacteria [J]. Appl. Environ. Microb., 1981, 41(3): 766-774 [32] Obuekwe C O, Westlake D W S, Plambeck J A, et al. Corrosion of mild-steel in cultures of ferric iron reducing bacterium isolated from crude-oil. I. Polarization characteristics [J]. Corrosion, 1981, 37(8): 461-467 [33] Obuekwe C O, Westlake D W S, Plambeck J A, et al. Corrosion of mild-steel in cultures of ferric iron reducing bacterium isolated from crude-oil. II. Mechanism of anodic depolarization [J]. Corrosion, 1981, 37(11): 632-637 [34] Little B, Wagner P, Hart K, et al. The role of biomineralization in microbiologically influenced corrosion [J]. Biodegradation, 1998, 9(1): 1-10 [35] Zhang J, Song X X, Luan X, et al. Effects of Shewanella algae on corrosion of Zn-Al-Cd anode [J]. Acta Metall. Sin., 2012, 48(12): 1495-1502 (张杰, 宋秀霞, 栾鑫等. 海藻希瓦氏菌对Zn-Al-Cd牺牲阳极的腐蚀性能影响 [J]. 金属学报, 2012, 48(12): 1495-1502) [36] Liu B, Duan J Z, Hou B R. Microbiologically influenced corrosion of 316L SS by marine biofilims in seawater [J]. J. Chin. Soc. Corros. Prot., 2012, 32(1): 48-53 (刘彬, 段继周, 侯保荣. 天然海水中微生物膜对316L不锈钢腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2012, 32(1): 48-53) [37] Cao C N. Corrosion Electrochemistry [M]. Beijing: Chemistry Industry Press, 2004: 248-249 (曹楚南. 腐蚀电化学原理 [M]. 化学工业出版社, 2004: 248-249) [38] Song S Z. Methods of Corrosion Electrochemistry Re-search [M]. Beijing: Chemistry Industry Press, 1988: 187 (宋诗哲. 腐蚀电化学研究方法 [M]. 化学工业出版社, 1988: 187) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|