Please wait a minute...
J Chin Soc Corr Pro  2012, Vol. 32 Issue (3): 241-246    DOI:
Current Issue | Archive | Adv Search |
EFFECT OF CYCLIC HYDROSTATIC PRESSURE ON SACRIFICIAL ANODE CATHODIC PROTECTION
HU Shengnan1, ZHANG Tao1,2, SHAO Yawei1,2, MENG Guozhe1,2, WANG Fuhui1,2
1. Corrosion and Protection Laboratory, Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001
2. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Download:  PDF(1381KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The protective performance of cathodic protection (CP) system consisted of Zn-Bi sacrificial anode and Ni-Cr-Mo-V steel was investigated by electrochemical measurements and morphology observation. The shallow-deep water alternating cycle was simulated by immersed the CP system to cyclic conditions of 16 h immersion at atmospheric pressure and 8 h pressurized at 3.5 MPa. The experiment results indicated that the cyclic hydrostatic pressure had significant influence on the CP system. Comparing with the counterpart at atmospheric pressure, the anode potential instantaneously responded to the cyclic hydrostatic pressure and the discharge performance of anode decreased due to the deposition of corrosion product. At the cyclic hydrostatic pressure, the CP system exhibited the higher slope parameter, which indicated that the CP system can not provide the adequate protection for Ni-Cr-Mo-V steel.
Key words:  cathodic protection      sacrificial anode      cyclic hydrostatic pressure     
Received:  12 April 2011     
ZTFLH: 

TG174.41

 
Corresponding Authors:  ZHANG Tao     E-mail:  zhangtao@hrbeu.edu.cn

Cite this article: 

HU Shengnan, ZHANG Tao, SHAO Yawei, MENG Guozhe, WANG Fuhui. EFFECT OF CYCLIC HYDROSTATIC PRESSURE ON SACRIFICIAL ANODE CATHODIC PROTECTION. J Chin Soc Corr Pro, 2012, 32(3): 241-246.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2012/V32/I3/241

[1] Fischer K P, Sydberger T, Lye R. Field Testing of Deep Water Cathodic Protection on the Norwegian Continental Shelf [A],Corrosion/87[C]. Houston, TX: NACE, 1987, 67

[2] Kennelley K J, Mateer M W. Evaluation of the Performance of Bimetallic Anodes on Deep-Water Production Platform [A],Corrosion/93[C]. Houston, TX: NACE, 1993, 523

[3] Chen S, Hartt W H, Wolfson W. Deepwater cathodic protection: Part 2-Field deployment results [J]. Corrosion. 2003,59(8): 721-732

[4] Fischer K P. Deep water: Considerations of the Cathodic Protection Design Basis[A], Offshore Technology Conference,Houston[C]. 1999: 11057

[5] Chen S, Hartt W H, Wolfson W. Deepwater cathodic protection: part 1-laboratory simulation experiments [J]. Corrosion.2002, 58(1): 38-48

[6] 李妍. 深水导管架的阴极保护[J]. 全面腐蚀控制, 2004, 18(4):18-20

[7] Fischer K P, Finnegan J E. Cathodic Protection Behavior of Steel in Seawater and the Protective Properties of the Calcareous Deposits [A], Corrosion/89[C].Houston, TX: NACE, 1989, 582

[8] Wang W, Hartt W H, Chen S. Sacrificial anode cathodic polarization of steel in seawater: Part 1-A novel experimental and analysis methodology [J]. Corrosion. 1996, 52(6): 419-427

[9] Chen S, Hartt W H, Townley D. Sacrificial anode cathodic polarization of steel in seawater: Part 2-Design and data analysis[J]. Corrosion. 1998, 54(4) 317-322

[10] Bethune K, Hartt W H. Applicability of the slope parameter method to the design of cathodic protection systems for marine pipelines [J]. Corrosion. 2001, 57(1): 78-84

[11] Perkins J, Bornholdt R A.The corrosion product morphology found on sacrificial zinc anodes [J].Corros. Sci., 1977, 17: 377-384\par
[1] SUN Haijing, QIN Ming, LI Lin. Performance of Al-Zn-In-Mg-Ti Sacrificial Anode in Simulated Low Dissolved Oxygen Deep Water Environment[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[2] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[3] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[4] ZHAO Shuyan,TONG Xinhong,LIU Fuchun,WENG Jinyu,HAN En-Hou,LI Xiaohui,YANG Lin. Corrosion Resistance of Three Zinc-rich Epoxy Coatings[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[5] Guirong WANG,Yawei SHAO,Yanqiu WANG,Guozhe MENG,Bin LIU. Effect of Applied Cathodic Protection Potential on Cathodic Delamination of Damaged Epoxy Coating[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[6] Ping QIU, Lianjie YANG, Yu SONG, Hongfei YANG. Influence of DMF Modified TiO2 Film on the Photogenerated Cathodic Protection Behavior[J]. 中国腐蚀与防护学报, 2018, 38(3): 289-295.
[7] Jie KOU, Xince ZHANG, Gan CUI, Baoan YANG. Research Progress on Cathodic Protection Potential Distribution of Tank Bottom Plate[J]. 中国腐蚀与防护学报, 2017, 37(4): 305-314.
[8] Xiaolin WANG, Maocheng YAN, Yun SHU, Cheng SUN, Wei KE. AC Interference Corrosion of Pipeline Steel Beneath Delaminated Coating with Holiday[J]. 中国腐蚀与防护学报, 2017, 37(4): 341-346.
[9] Tingyong WANG,Lanying MA,Xiangchen WANG,Haibing ZHANG,Kai CHEN,Yonggui YAN. Investigation of Cathodic Protection Parameters of Candi-date Materials of Condenser for a Nuclear Power Station and Its Application in Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 624-630.
[10] Shuang YANG,Nan TANG,Maocheng YAN,Kangwen ZHAO,Cheng SUN,Jin XU,Changkun YU. Effect of Temperature on Corrosion Behavior of X80 Pipeline Steel in Acidic Soil[J]. 中国腐蚀与防护学报, 2015, 35(3): 227-232.
[11] ZHAO Guoqiang, WEI Yinghua, LI Jing. Current Efficiency and Corrosion Mechanism of Al-Zn-In Sacrificial Anode at Different Current Densities[J]. 中国腐蚀与防护学报, 2015, 35(1): 69-74.
[12] XU Hongmei, LIU Wei, CAO Lixin, SU Ge, GAO Rongjie. Preparation of ZnO/TiO2 Composite Film on 304 Stainless Steel and Its Photo-cathodic Protection Properties[J]. 中国腐蚀与防护学报, 2014, 34(6): 507-514.
[13] FAN Fengqin, SONG Jiwen, LI Chengjie, DU Min. Effect of Flow Velocity on Cathodic Protection of DH36 Steel in Seawater[J]. 中国腐蚀与防护学报, 2014, 34(6): 550-557.
[14] QIU Jing, DU Min, LU Yuan, ZHANG Ying, GUO Haijun, LI Chengjie. Cathodic Protection of X65 Carbon Steel in a Simulated Oilfield Produced Water[J]. 中国腐蚀与防护学报, 2014, 34(4): 333-338.
[15] LIN Yonghua,ZHANG Xuefeng,HAN Li,ZHANG Lanhe. Comparison of Corrosion Protection Measures of Grounding Grids for Electric Power Station[J]. 中国腐蚀与防护学报, 2013, 33(6): 501-506.
No Suggested Reading articles found!