Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2026, Vol. 46 Issue (1): 92-102    DOI: 10.11902/1005.4537.2025.269
Current Issue | Archive | Adv Search |
Influence of TiC Particles on Microstructure and Corrosion Performance of Laser Powder Bed Fusion Al-Mg-Sc-Zr Alloy
ZHANG Zequn1, LUO Xinjie1, LIU Pengfei2, DONG Kai3, ZHUO Xianqin4, WU Junsheng1, ZHANG Bowei1()
1.Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2.Xinjiang Joinworld Co. Ltd., Xinjiang 830000, China
3.Shihezi Zhongjin Electrode Foil Co. Ltd., Shihezi 832000, China
4.Hainan International Commercial Space Launch Co. Ltd., Wenchang 571300, China
Cite this article: 

ZHANG Zequn, LUO Xinjie, LIU Pengfei, DONG Kai, ZHUO Xianqin, WU Junsheng, ZHANG Bowei. Influence of TiC Particles on Microstructure and Corrosion Performance of Laser Powder Bed Fusion Al-Mg-Sc-Zr Alloy. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 92-102.

Download:  HTML  PDF(37872KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

TiC nanoparticle modified Al-Mg-Sc-Zr alloy was fabricated via laser powder bed fusion (LPBF) technique. The microstructure and corrosion behavior of the as-fabricated alloy were systematically investigated through microstructural analysis of grain structures and precipitates combined with corrosion evaluations, including room-temperature immersion in 3.5% (mass fraction) NaCl solution and slow strain rate tensile tests both in air and 3.5%NaCl solution. The results indicate that the addition of TiC nanoparticle promotes the formation of abundant Al3(Ti, Sc, Zr) precipitates of nano-size, which induces the transition from columnar-equiaxed bimodal grain distribution to fully equiaxed grains in LPBF-fabricated alloy. This refined grain structure significantly improvethe corrosion resistance and stress corrosion cracking (SCC) resistance. Furthermore, the molten pool boundaries and micron-sized TiC particles formed by the agglomeration of nano-particle serve as the preferential sites for localized corrosion, which also act as the preferential initiation and propagation regions for stress corrosion cracks.

Key words:  laser powder bed fusion (LPBF)      TiC particle      Al-Mg-Sc-Zr alloy      localized corrosion      stress corrosion     
Received:  27 August 2025      32134.14.1005.4537.2025.269
ZTFLH:  TG172  
Fund: Hainan Provincial Natural Science Foundation of China(425QY913);Xinjiang Talent Development Fund-Shihezi Zhongjin Electrode Foil Co. Ltd., Hot-Pressed Foil R&D Team Building Project

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2025.269     OR     https://www.jcscp.org/EN/Y2026/V46/I1/92

Fig.1  OM images of LPBF Al-Mg-Sc-Zr alloy (a), OM images (b), SEM images (c) and corresponding the EDS results (d) of LPBF TiC-modified Al-Mg-Sc-Zr alloy
Fig.2  OM images (a, d) and SEM images (b, c, e, f) of XZ plane for LPBF Al-Mg-Sc-Zr alloy without TiC modification (a-c) and TiC modification (d-f)
Fig.3  IPF image (a) of LPBF Al-Mg-Sc-Zr alloy, IPF image (b), band contrast image (c), phase maps (d, e) and KAM image (f) of LPBF TiC-modified Al-Mg-Sc-Zr alloy
Fig.4  Bright images (a, b), SAED pattern (c), HRTEM images (d, e), STEM images and EDS mapping (f) of LPBF TiC-modified Al-Mg-Sc-Zr alloy
Fig.5  CLSM images (a, b, d, e) and SEM images (c, f) of XY plane (a-c) and XZ plane (d-f) for LPBF TiC-modified Al-Mg-Sc-Zr alloy after immersion
Fig.6  SEM images (a), EDS results (b, c), FIB-SEM results (d-g) of micro-sized TiC particle in LPBF TiC-modified Al-Mg-Sc-Zr alloy
Fig.7  Surface morphology map (a), surface potential diagram (b), and height and potential profiles of the line represented in the surface map (c) of micro-sized TiC particle in LPBF TiC-modified Al-Mg-Sc-Zr alloy
Fig.8  Schematic diagram of the corrosion behavior for LPBF TiC-modified Al-Mg-Sc-Zr alloy
Fig.9  Stress-strain curves of LPBF TiC-modified Al-Mg-Sc-Zr alloy
Fig.10  Fracture SEM morphologies of LPBF TiC-modified Al-Mg-Sc-Zr alloy in air (a-d) and in solution (e-h) and EDS results of Fig.10g (i)
Fig.11  Fracture SEM images of LPBF TiC-modified Al-Mg-Sc-Zr alloy in air (a-c) and in solution (d-f)
[1] Conner B P, Manogharan G P, Martof A N, et al. Making sense of 3-D printing: Creating a map of additive manufacturing products and services [J]. Addit. Manuf., 2014, 1-4: 64
[2] Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
doi: 10.1016/j.actamat.2016.07.019
[3] Gong G H, Ye J J, Chi Y M, et al. Research status of laser additive manufacturing for metal: A review [J]. J. Mater. Res. Technol., 2021, 15: 855
doi: 10.1016/j.jmrt.2021.08.050
[4] Olakanmi E O, Cochrane R F, Dalgarno K W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties [J]. Prog. Mater. Sci., 2015, 74: 401
doi: 10.1016/j.pmatsci.2015.03.002
[5] Song X W, Bai M M, Chen N N, et al. Effect of aspergillus aculeatus on corrosion behavior of 5A02 Al-alloy in coastal atmospheric environment of Hainan island [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 631
宋晓稳, 白苗苗, 陈娜娜 等. 海南滨海大气环境中棘孢曲霉对铝合金腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2025, 45: 631
doi: 10.11902/1005.4537.2024.191
[6] Hamza H M, Deen K M, Khaliq A, et al. Microstructural, corrosion and mechanical properties of additively manufactured alloys: A review [J]. Crit. Rev. Solid State Mater. Sci., 2022, 47: 46
doi: 10.1080/10408436.2021.1886044
[7] Aboulkhair N T, Simonelli M, Parry L, et al. 3D printing of Aluminium alloys: Additive manufacturing of Aluminium alloys using selective laser melting [J]. Prog. Mater. Sci., 2019, 106: 100578
doi: 10.1016/j.pmatsci.2019.100578
[8] Zhang J L, Song B, Wei Q S, et al. A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends [J]. J. Mater. Sci. Technol., 2019, 35: 270
doi: 10.1016/j.jmst.2018.09.004
[9] Galy C, Le Guen E, Lacoste E, et al. Main defects observed in aluminum alloy parts produced by SLM: From causes to consequences [J]. Addit. Manuf., 2018, 22: 165
[10] Li N, Wang T, Zhang L X, et al. Coupling effects of SiC and TiB2 particles on crack inhibition in Al-Zn-Mg-Cu alloy produced by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2023, 164: 37
doi: 10.1016/j.jmst.2023.04.022
[11] Liu X H, Liu Y Z, Zhou Z G, et al. Enhanced strength and ductility in Al-Zn-Mg-Cu alloys fabricated by laser powder bed fusion using a synergistic grain-refining strategy [J]. J. Mater. Sci. Technol., 2022, 124: 41
doi: 10.1016/j.jmst.2021.12.078
[12] Ma R L, Peng C Q, Cai Z Y, et al. Effect of bimodal microstructure on the tensile properties of selective laser melt Al-Mg-Sc-Zr alloy [J]. J. Alloy. Compd., 2020, 815: 152422
doi: 10.1016/j.jallcom.2019.152422
[13] Li R D, Wang M B, Yuan T C, et al. Selective laser melting of a novel Sc and Zr modified Al-6.2Mg alloy: Processing, microstructure, and properties [J]. Powder Technol., 2017, 319: 117
doi: 10.1016/j.powtec.2017.06.050
[14] Zhu Z G, Ng F L, Seet H L, et al. Superior mechanical properties of a selective-laser-melted AlZnMgCuScZr alloy enabled by a tunable hierarchical microstructure and dual-nanoprecipitation [J]. Mater. Today, 2022, 52: 90
doi: 10.1016/j.mattod.2021.11.019
[15] Bi J, Lei Z L, Chen Y B, et al. An additively manufactured Al-14.1Mg-0.47Si-0.31Sc-0.17Zr alloy with high specific strength, good thermal stability and excellent corrosion resistance [J]. J. Mater. Sci. Technol., 2021, 67: 23
doi: 10.1016/j.jmst.2020.06.036
[16] Cheng Z Y. Study on selective laser melting of high-strength Al-Mg-Sc-Zr aluminum alloy [D]. Beijing: China Academy of Engineering Physics, 2020
程志瑶. Al-Mg-Sc-Zr高强铝合金选区激光熔融工艺研究 [D]. 北京: 中国工程物理研究院, 2020
[17] Karabulut Y, Ünal R. Additive manufacturing of ceramic particle-reinforced aluminum-based metal matrix composites: A review [J]. J. Mater. Sci., 2022, 57: 19212
doi: 10.1007/s10853-022-07850-0
[18] Tang H, Xi X Y, Gao C F, et al. Microstructure evolution and strengthening mechanisms of a high-performance TiN-reinforced Al-Mn-Mg-Sc-Zr alloy processed by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2024, 187: 86
doi: 10.1016/j.jmst.2023.11.033
[19] Meng C Y. Corrosion mechanism and development of the Zn-containing 5xxx series Al alloy for shipbuilding industry [D]. Beijing: University of Science and Technology Beijing, 2016
孟春艳. 舰船用含Zn5xxx系铝合金的抗腐蚀机理及板材开发 [D]. 北京: 北京科技大学, 2016
[20] Wang M Y, Xia D H. Research progress on hydrogen embrittlement mechanism of high strength Al-alloy [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 261
王明洋, 夏大海. 高强铝合金氢脆机理研究进展 [J]. 中国腐蚀与防护学报, 2025, 45: 261
doi: 10.11902/1005.4537.2024.238
[21] Chen H W, Zhang C Q, Jia D, et al. Corrosion behaviors of selective laser melted aluminum alloys: A review [J]. Metals, 2020, 10: 102
doi: 10.3390/met10010102
[22] Gu D D, Zhang H, Dai D H, et al. Anisotropic corrosion behavior of Sc and Zr modified Al-Mg alloy produced by selective laser melting [J]. Corros. Sci., 2020, 170: 108657
doi: 10.1016/j.corsci.2020.108657
[23] Zhang Z Q, Sun J, Xia J Y, et al. Anisotropic response in corrosion behavior of laser powder bed fusion Al-Mn-Mg-Sc-Zr alloy [J]. Corros. Sci., 2022, 208: 110634
doi: 10.1016/j.corsci.2022.110634
[24] Tan Q Y, Zhang M X. Recent advances in inoculation treatment for powder-based additive manufacturing of aluminium alloys [J]. Mater. Sci. Eng., 2024, 158R: 100773
[25] Xi L X, Feng L L, Gu D D, et al. ZrC + TiC synergically reinforced metal matrix composites with micro/nanoscale reinforcements prepared by laser powder bed fusion [J]. J. Mater. Res. Technol., 2022, 19: 4645
doi: 10.1016/j.jmrt.2022.06.149
[26] Zhang X, Zhou X, Hashimoto T, et al. The influence of grain structure on the corrosion behaviour of 2A97-T3 Al-Cu-Li alloy [J]. Corros. Sci., 2017, 116: 14
doi: 10.1016/j.corsci.2016.12.005
[27] Kong D C, Dong C F, Ni X Q, et al. Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes [J]. J. Mater. Sci. Technol., 2019, 35: 1499
doi: 10.1016/j.jmst.2019.03.003
[28] Li J, Nie J F, Xu Q F, et al. Enhanced mechanical properties of a novel heat resistant Al-based composite reinforced by the combination of nano-aluminides and submicron TiN particles [J]. Mater. Sci. Eng., 2020, 770A: 138488
[29] Zhang H, Gu D D, Dai D H, et al. Influence of scanning strategy and parameter on microstructural feature, residual stress and performance of Sc and Zr modified Al-Mg alloy produced by selective laser melting [J]. Mater. Sci. Eng., 2020, 788A: 139593
[30] Chen H, Lu L, Huang Y H, et al. Insight into TiN inclusion induced pit corrosion of interstitial free steel exposed to aerated NaCl solution [J]. J. Mater. Res. Technol., 2021, 13: 13
doi: 10.1016/j.jmrt.2021.04.046
[31] Li R D, Chen H, Zhu H B, et al. Effect of aging treatment on the microstructure and mechanical properties of Al-3.02Mg-0.2Sc-0.1Zr alloy printed by selective laser melting [J]. Mater. Des., 2019, 168: 107668
doi: 10.1016/j.matdes.2019.107668
[32] Zhang H, Gu D D, Yang J K, et al. Selective laser melting of rare earth element Sc modified aluminum alloy: Thermodynamics of precipitation behavior and its influence on mechanical properties [J]. Addit. Manuf., 2018, 23: 1
[1] LAN Botao, WU Bin, MING Hongliang, WANG Jianqiu, HAN En-Hou. Research Progress of Stress Corrosion Crack Behavior of Selected Laser Melted Austenitic Stainless Steel in High Temperature Pressurized Water[J]. 中国腐蚀与防护学报, 2026, 46(1): 1-14.
[2] DAI Nianwei, DOU Xinyi, LIU Huajian, LENG Bin. Research Progress on Corrosion of Additively Manufactured Alloys Applied in Nuclear Energy Field[J]. 中国腐蚀与防护学报, 2026, 46(1): 15-24.
[3] WANG Lifang, SHANG Mengchao, GAO Xiyu, LIU Guichang, SUN Wen. Effect of Inherent Films Resulted from Manufacturing Process on Corrosion of B30 Cu-Ni Alloy[J]. 中国腐蚀与防护学报, 2025, 45(6): 1575-1588.
[4] ZHANG Deping, YAN Lizhen, YU Yang, YANG Guangming, DAI Chunyu, MEGN Le, XU Bo, LIU Zhiyong. Fracture Failure Mechanism of N80 Tubing in Sophisticated CO2 Flooding Production Well Environment[J]. 中国腐蚀与防护学报, 2025, 45(6): 1698-1708.
[5] LI Ke, LI Tianlei, CAO Xiaoyan, JIANG Liu, WANG Yaxi, XIAO Zeyu, ZHONG Xiankang. Corrosion Behavior of 316L Stainless Steel Welded Joints in S-H2S-containing Environments[J]. 中国腐蚀与防护学报, 2025, 45(6): 1725-1733.
[6] CHENG Luyao, XU Yanlei, LI Jiawei, SUN Chong, LIN Xueqiang, SUN Jianbo. Effect of CO2 Pressure on Stress Corrosion Cracking Susceptibility of X65 Pipeline Steel Used for Transporting Impure Supercritical CO2[J]. 中国腐蚀与防护学报, 2025, 45(5): 1351-1360.
[7] LI Weipeng, LUO Kunjie, WANG Huisheng, CHEN Jiacheng, HAN Yaolei, PANG Xiaolu, PENG Qunjia, QIAO Lijie. Effect of Precipitation on Stress Corrosion Cracking Initiation of Nickel Based 718 Alloy in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2025, 45(4): 947-955.
[8] MA Heng, WANG Zhongxue, PANG Kun, ZHANG Qingpu, CUI Zhongyu. Localized Corrosion Behavior Induced by Corrosion-active Inclusion in Low Alloy Steel[J]. 中国腐蚀与防护学报, 2025, 45(4): 1005-1013.
[9] ZHANG Guoqing, YU Zhixia, WANG Yuesong, WANG Zhi, JIN Zhengyu, LIU Hongwei. Corrosion Behavior of Steel Materials in Marine Supercritical Carbon Dioxide Environment[J]. 中国腐蚀与防护学报, 2025, 45(4): 1061-1069.
[10] WU Yuhang, CHEN Xu, WANG Shoude, LIU Chang, LIU Jie. Stress Corrosion Behavior of X70 Steel in an Artificial Near-neutral Soil Solution Under Direct Current[J]. 中国腐蚀与防护学报, 2025, 45(2): 489-496.
[11] LI Kaiyang, WU You, ZHANG Guanlin, ZHANG Naiqiang. Research Progress of Environmental Cracking of Structural Metallic Materials for High Temperature Supercritical CO2 System[J]. 中国腐蚀与防护学报, 2025, 45(1): 61-68.
[12] SU Zhicheng, ZHANG Xian, CHENG Yan, LIU Jing, WU Kaiming. Comparative Study on Stress Corrosion Cracking Behavior of Ultrafine Bainitic Steel and Q&P Steel with Same Composition in Seawater[J]. 中国腐蚀与防护学报, 2024, 44(6): 1495-1506.
[13] ZHANG Zhuanli, DAI Hailong, ZHANG Zhe, SHI Shouwen, CHEN Xu. Stress Corrosion Cracking Behavior of 316L in Hydrofluoric Acid Solution[J]. 中国腐蚀与防护学报, 2024, 44(6): 1633-1640.
[14] LIU Guangsheng, WANG Weijun, ZHOU Pei, TAN Jinhao, DING Hongxin, ZHANG Wei, XIANG Yong. Corrosion Behavior of Casing Steels 13Cr and N80 During Sequestration in an Impure Carbon Dioxide Environment[J]. 中国腐蚀与防护学报, 2024, 44(5): 1200-1212.
[15] HAN Yulong, LI Jian, GUO Liya, YANG Bianjiang, LU Hengchang, WEI Xicheng, DONG Han. Localized Corrosion Behavior Induced by MnS Inclusions in HRB400E Rebar Steel[J]. 中国腐蚀与防护学报, 2024, 44(5): 1255-1262.
No Suggested Reading articles found!