|
|
|
| Corrosion Inhibition Performance of Imidazoline Derivatives and Thiourea on X65 Steel Under Inert Deposits Scale in an Artificial CO2 Saturated Oilfield Produced Water |
GAI Mingyue1, ZHANG Jing1,2( ), WANG Chongkun1, LI Xiumei1 |
1.College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China 2.Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China |
|
Cite this article:
GAI Mingyue, ZHANG Jing, WANG Chongkun, LI Xiumei. Corrosion Inhibition Performance of Imidazoline Derivatives and Thiourea on X65 Steel Under Inert Deposits Scale in an Artificial CO2 Saturated Oilfield Produced Water. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 220-232.
|
|
|
Abstract To solve the problem of under-deposit corrosion of X65 steel in CO2-saturated oilfield-produced water, the corrosion inhibition performance of alkyl imidazolines (IM), thiourea (TU) and their compound corrosion inhibitors (TU/IM) on X65 steel under SiO2 and CaCO3 inert deposits was investigated using electrochemical analysis and surface analysis. The results show that the corrosion inhibition efficiency η of the three inhibitors may be ranked as η (TU/IM) > η (TU) > η (IM). When adopting IM as inhibitor, the formation of a continuous protective corrosion inhibitor film is difficulty on the steel surface under the two type scales of inert deposits, while the corrosion of metal under the SiO2 deposits is accelerated, thus IM is poor in corrosion inhibition performance. For TU as a mixed-type inhibitor, both the cathodic and anodic reactions are suppressed, which may be due to that the S atoms of TU tend to coordinate with the empty d-orbitals of Fe atoms, thereby generate coordination chemical bonds, resulting in an electrons rich band in this region, which in turn enhance the stability and protection ability of the formed inhibitor film. Whereas, the TU/IM combination inhibitor demonstrate excellent synergistic inhibition effect, which may be ascribed to that TU initially formed a primary adsorption film on the steel through its superior diffusivity and adsorption capacity, while IM subsequently contributed hydrophobic chains to establish a secondary adsorption film, this dual-layered structure significantly enhances the corrosion inhibition effectiveness.
|
|
Received: 25 February 2025
32134.14.1005.4537.2025.063
|
|
|
| Fund: Natural Science Foundation of Shandong Province(ZR2019MEM003) |
| [1] |
Yang T, Xu L, Wang J C, et al. Research progress on CO2 corrosion and protective countermeasures for oil casing [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1134
|
|
杨 涛, 许 磊, 王建春 等. 油套管CO2腐蚀和防护研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 1134
|
| [2] |
Pang L, Wang Z B, Emori W, et al. Under-deposit corrosion of carbon steel beneath full coverage of CaCO3 deposit layer under different atmospheres [J]. J. Mater. Eng. Perform., 2021, 30: 7552
doi: 10.1007/s11665-021-05926-7
|
| [3] |
Sun M, Cui W, Lin N. Corrosion analysis of shale gas downhole tubing under the synergistic action of multiple factors [J]. J. Phys.: Conf. Ser., 2023, 2539: 012039
|
| [4] |
Zhang G A, Yu N, Yang L Y, et al. Galvanic corrosion behavior of deposit-covered and uncovered carbon steel [J]. Corros. Sci., 2014, 86: 202
doi: 10.1016/j.corsci.2014.05.011
|
| [5] |
Guo L, Obot I B, Zheng X W, et al. Theoretical insight into an empirical rule about organic corrosion inhibitors containing nitrogen, oxygen, and sulfur atoms [J]. Appl. Surf. Sci., 2017, 406: 301
doi: 10.1016/j.apsusc.2017.02.134
|
| [6] |
Zhang C, Lu Y, Zhao J M. Synergistic inhibition effect of imidazoline ammonium salt and three cationic surfactants in H2S/CO2 brine solution [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 237
|
|
张 晨, 陆 原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应 [J]. 中国腐蚀与防护学报, 2020, 40: 237
|
| [7] |
Ouyang J L, Wang X X, Han X, et al. Inhibition of imidazolines on CO2 induced corrosion of carbon steel in oil and water alternatively wetting conditions [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 707
|
|
欧阳嘉露, 王茜茜, 韩 霞 等. 油水交替环境中咪唑啉对CO2腐蚀的抑制作用研究 [J]. 中国腐蚀与防护学报, 2024, 44: 707
doi: 10.11902/1005.4537.2023.209
|
| [8] |
Cruz J, Martínez-Aguilera L M R, Salcedo R, et al. Reactivity properties of derivatives of 2-imidazoline: An ab initio DFT study [J]. Int. J. Quant. Chem., 2001, 85: 546
doi: 10.1002/qua.v85:4/5
|
| [9] |
Bai Y L, Shen G L, Qin Q Y, et al. Effect of thiourea imidazoline quaternary ammonium salt corrosion inhibitor on corrosion of X80 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 60
|
|
白云龙, 沈国良, 覃清钰 等. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 60
doi: 10.11902/1005.4537.2020.015
|
| [10] |
Ni X L, Li H, Li Y F, et al. Corrosion protection of imidazoline corrosion inhibitors with different carbon chain length in CO2 driving oil environment [J]. Surf. Technol., 2023, 52(8): 278
|
|
倪小龙, 李 欢, 李云飞 等. 不同碳链长度咪唑啉缓蚀剂在CO2驱采油环境中的腐蚀防护作用 [J]. 表面技术, 2023, 52(8): 278
|
| [11] |
Fan B M, Zhu H T, Li H, et al. Penetration of imidazoline derivatives through deposited scale for inhibiting the under-deposit corrosion of pipeline steel [J]. Corros. Sci., 2024, 235: 112209
doi: 10.1016/j.corsci.2024.112209
|
| [12] |
Katerina K, Gubner R. Development of standard test method for investigation of under-deposit corrosion in carbon dioxide environment and its application in oil and gas industry [A]. Corrosion 2010 [C]. San Antonio, Texas, 2010: NACE-10331
|
| [13] |
Tan Y J, Fwu Y, Bhardwaj K. Electrochemical evaluation of under-deposit corrosion and its inhibition using the wire beam electrode method [J]. Corros. Sci., 2011, 53: 1254
doi: 10.1016/j.corsci.2010.12.015
|
| [14] |
Abd Karim M A, Che Ismail M, Abd Karim M F. Performance of corrosion inhibitor with sand deposit in CO2 environment [J]. ARPN J. Eng. Appl. Sci., 2016, 11: 12103
|
| [15] |
Yang J, Wang Z B, Qiao Y X, et al. Synergistic effects of deposits and sulfate reducing bacteria on the corrosion of carbon steel [J]. Corros. Sci., 2022, 199: 110210
doi: 10.1016/j.corsci.2022.110210
|
| [16] |
Pandarinathan V, Lepková K, Bailey S I, et al. Impact of mineral deposits on CO2 corrosion of carbon steel [A]. Corrosion 2013 [C]. Orlando, Florida, 2013: NACE-2013-2579
|
| [17] |
Pandarinathan V, Lepková K, Bailey S I, et al. Evaluation of corrosion inhibition at sand-deposited carbon steel in CO2-saturated brine [J]. Corros. Sci., 2013, 72: 108
doi: 10.1016/j.corsci.2013.03.013
|
| [18] |
He S S, Han X F, Lai X X, et al. Research progress on corrosion inhibitor and inhibition mechanism against CO2 corrosion of carbon steel [J]. Surf. Technol., 2023, 52(7): 117
|
|
贺莎莎, 韩新福, 赖喜祥 等. 碳钢CO2腐蚀的缓蚀剂策略及缓蚀行为研究进展 [J]. 表面技术, 2023, 52(7): 117
|
| [19] |
Zhang Y N, Wang T L, Han X, et al. Corrosion of artificial rock layer covered steel electrodes in a CO2 environment: The influence of permeability [J]. Corros. Sci., 2016, 105: 190
doi: 10.1016/j.corsci.2016.01.017
|
| [20] |
Zhu T Z, Wang L D, Sun W, et al. The role of corrosion inhibition in the mitigation of CaCO3 scaling on steel surface [J]. Corros. Sci., 2018, 140: 182
doi: 10.1016/j.corsci.2018.06.003
|
| [21] |
Wang Z B, Hu H X, Zheng Y G, et al. Comparison of the corrosion behavior of pure titanium and its alloys in fluoride-containing sulfuric acid [J]. Corros. Sci., 2016, 103: 50
doi: 10.1016/j.corsci.2015.11.003
|
| [22] |
Wang Z B, Hu H X, Zheng Y G. Evaluation of the dissolved oxygen-related electrochemical behavior of pure titanium in acidic fluoride-containing solutions [J]. J. Solid State Electrochem., 2016, 20: 3459
doi: 10.1007/s10008-016-3321-5
|
| [23] |
Li G C, Lu C Q, Yang W Z, et al. Progress on research of thiourea and derivatives as corrosion inhibitor [J]. Corros. Sci. Prot. Technol., 2001, 13: 169
|
|
李广超, 路长青, 杨文忠 等. 硫脲及其衍生物的缓蚀行为研究进展 [J]. 腐蚀科学与防护技术, 2001, 13: 169
|
| [24] |
Obot I B, Solomon M M, Umoren S A, et al. Progress in the development of sour corrosion inhibitors: Past, present, and future perspectives [J]. J. Ind. Eng. Chem., 2019, 79: 1
doi: 10.1016/j.jiec.2019.06.046
|
| [25] |
Suarez E M, Machuca L L, Kinsella B, et al. CO2 corrosion inhibitors performance at deposit-covered carbon steel and their adsorption on different deposits [J]. Corrosion, 2019, 75: 1118
doi: 10.5006/3223
|
| [26] |
Chen Z H, Yang W Z, Xu B, et al. Corrosion behaviors and physical properties of polypyrrole-molybdate coating electropolymerized on carbon steel [J]. Prog. Organ. Coat., 2018, 122: 159
|
| [27] |
Pang L, Wang Z B, Zheng Y G, et al. On the localised corrosion of carbon steel induced by the in-situ local damage of porous corrosion products [J]. J. Mater. Sci. Technol., 2020, 54: 95
doi: 10.1016/j.jmst.2020.03.041
|
| [28] |
Obot I B, Sorour A A, Verma C, et al. Key parameters affecting sweet and sour corrosion: Impact on corrosion risk assessment and inhibition [J]. Eng. Fail. Anal., 2023, 145: 107008
doi: 10.1016/j.engfailanal.2022.107008
|
| [29] |
Peisert H, Chassé T, Streubel P, et al. Relaxation energies in XPS and XAES of solid sulfur compounds [J]. J. Electron. Spectrosc. Relat. Phenom., 1994, 68: 321
doi: 10.1016/0368-2048(94)02129-5
|
| [30] |
Haque J, Srivastava V, Quraishi M A, et al. Polar group substituted imidazolium zwitterions as eco-friendly corrosion inhibitors for mild steel in acid solution [J]. Corros. Sci., 2020, 172: 108665
doi: 10.1016/j.corsci.2020.108665
|
| [31] |
Zhang W W, Li H J, Wang M R, et al. Tetrahydroacridines as corrosion inhibitor for X80 steel corrosion in simulated acidic oilfield water [J]. J. Mol. Liq., 2019, 293: 111478
doi: 10.1016/j.molliq.2019.111478
|
| [32] |
Özcan M, Dehri İ. Electrochemical and quantum chemical studies of some sulphur-containing organic compounds as inhibitors for the acid corrosion of mild steel [J]. Prog. Org. Coat., 2004, 51: 181
doi: 10.1016/j.porgcoat.2004.07.017
|
| [33] |
Zhang C, Zhao J M. Synergistic inhibition effects of octadecylamine and tetradecyl trimethyl ammonium bromide on carbon steel corrosion in the H2S and CO2 brine solution [J]. Corros. Sci., 2017, 126: 247
doi: 10.1016/j.corsci.2017.07.006
|
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|