Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (5): 1441-1449    DOI: 10.11902/1005.4537.2024.345
Current Issue | Archive | Adv Search |
Evolution of Oxide Scale of 3.5% Silicon Steel in Solid State Decarburization in CO2-CO Atmospheres
SUN Lingyan1, HONG Lukuo1, SUN Caijiao1(), AI Liqun1, ZHOU Meijie1, WEN Li2
1 College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China
2 Anyang Iron and Steel Corporation Limited, Anyang 455004, China
Cite this article: 

SUN Lingyan, HONG Lukuo, SUN Caijiao, AI Liqun, ZHOU Meijie, WEN Li. Evolution of Oxide Scale of 3.5% Silicon Steel in Solid State Decarburization in CO2-CO Atmospheres. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1441-1449.

Download:  HTML  PDF(15281KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The manufacturing of silicon steel mainly relies on a technology of long process, which has a long process flow, many process nodes and high carbon emissions. In order to actively respond to the policy related with “carbon emission peak and carbon neutrality” and help enterprises achieve energy conservation and emission reduction. A new method was proposed for preparing high-silicon silicon steel thin strips by scrap steel-electric furnace-twin roll casting-solid decarburization. Herein, the effect of temperature and partial pressure ratio of PCO2/PCO on the evolution of the solid decarburization oxide scale on 3.5% (mass fraction) silicon steel tripe was studied. During the process carbon in the silicon steel will react with oxygen, so that being removal, while the Si reacts with oxygen forming SiO2 oxide scale. The results show that for a setting reaction time, with the increasing temperature the oxide scale thickens gradually; for a setting temperature, the oxide scale gradually thickens with the extending decarburization time. Increasing PCO2/PCO will accelerate the formation of the surface oxide scale, which will hinder the decarburization reaction in the early stage of decarburization. This study provides an important reference for optimizing the decarburization process and controlling the thickness of the oxide scale.

Key words:  3.5% silicon steel      solid-state decarburization      oxide layer      CO2-CO     
Received:  18 October 2024      32134.14.1005.4537.2024.345
ZTFLH:  TG174  
Fund: Hebei Provincial Natural Science Foundation(E2024209074)
Corresponding Authors:  SUN Caijiao, E-mail: Suncj@ncst.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.345     OR     https://www.jcscp.org/EN/Y2025/V45/I5/1441

Fig.1  Solid-state decarbonization device
Fig.2  Mass fraction of C in 3.5% silicon steel after decarbonization under different PCO2/PCO conditions
Fig.3  Cross sections of oxide scales formed on 3.5% silicon steel during decarbonization under different conditions: (a) PCO2/PCO = 0.10, (b) PCO2/PCO = 0.30
Fig.4  XRD patterns of 3.5% silicon steel after decarbonization under different PCO2/PCO conditions
Fig.5  Mass fraction of C in 3.5% silicon steel after decarburization at different gas flows
Fig.6  Mass fraction of C in 3.5% silicon steel decarburized at different gas flows as a function of time
Fig.7  Cross-sectional morphologies of 3.5% silicon steel after decarburization for 30 min at the gas flow rates of 450 mL·min-1 (a) and 850 mL·min-1 (b)
Fig.8  Cross section of 3.5% silicon steel after decarburization (a), and corresponding EDS mappings of Fe (b), O (c) and Si (d)
Fig.9  GDMS analysis results of depth profiles of Fe, Si, C and O in untreated 3.5% silicon steel
Fig.10  GDMS analysis results of depth profiles of Fe, Si, C and O in 3.5% silicon steel after decarburization for 30 min
Fig.11  Growth mechanism of oxide scale on 3.5% silicon steel during decarburization
Fig.12  Cross-sectional morphologies of 3.5% silicon steel after decarburization for 10 min at different temperatures: (a) 1273 K, (b) 1363 K, (c) 1413 K, (d) 1423 K, (e) 1433 K, (f) 1473 K
Fig.13  Cross-sectional morphologies of 3.5% silicon steel after decarburization for 30 min at different temperatures: (a) 1273 K, (b) 1363 K, (c) 1413 K, (d) 1423 K, (e) 1433 K, (f) 1473 K
Fig.14  Cross-sectional morphologies of oxide scale formed on 3.5% silicon steel after decarburization at PCO2/PCO = 0.10 for different time: (a) 10 min, (b) 20 min, (c) 30 min, (d) 40 min, (e) 50 min, (f) 60 min
Fig.15  Cross-sectional morphologies of oxide scale formed on 3.5% silicon steel after decarburization at PCO2/PCO = 0.20 for different time: (a) 10 min, (b) 20 min, (c) 30 min, (d) 40 min, (e) 50 min, (f) 60 min
[1] Zhang F C, Hong L K, Xu Y. Prospects for green steelmaking technology with low carbon emissions in China [J]. Carbon Energy, 2024, 6: e456
[2] Zhang F Q, Zhang W L, Sun W Q. Current status and development direction of electrical steel in China [J]. Electr. Steel, 2024, 6(4): 1
张凤泉, 张维林, 孙文权. 我国冷轧硅钢近10年发展现状及方向研究 [J]. 电工钢, 2024, 6(4): 1
[3] Zhang P. New energy industry development and silicon steel material characteristics [J]. China Steel Focus, 2024, (7): 23
张鹏. 新能源产业发展与硅钢用材特点浅析 [J]. 冶金管理, 2024, (7): 23
[4] Dong J C, Wang X Y, Cai B F, et al. Mitigation technologies and marginal abatement cost for iron and steel industry in China [J]. Environ. Eng., 2021, 39(10): 23
董金池, 汪旭颖, 蔡博峰 等. 中国钢铁行业CO2减排技术及成本研究 [J]. 环境工程, 2021, 39(10): 23
[5] Hong L K, Ai L Q, Cheng R, et al. Fe-C alloy ribbons gas-solid decarburization process [J]. J. Iron Steel Res., 2016, 28(5): 36
洪陆阔, 艾立群, 程 荣 等. 铁碳合金薄带气固反应脱碳工艺 [J]. 钢铁研究学报, 2016, 28(5): 36
doi: 10.13228/j.boyuan.issn1001- 0963.20150127
[6] Li Y Q, Ai L Q. Development of new solid-state steelmaking process [J]. Foundry Technol., 2017, 38(1): 8
李亚强, 艾利群. 固态炼钢新工艺研究的提出与进展 [J]. 铸造技术, 2017, 38(1): 8
[7] Li Q, Ai L Q, Li Y Q, et al. Study of gas-solid decarburization process for Fe-C alloy [J]. Foundry Technol., 2017, 38: 1650
李 强, 艾立群, 李亚强 等. 铁碳合金气-固脱碳反应研究 [J]. 铸造技术, 2017, 38: 1650
[8] Zhou M J. Decarburization kinetics of Fe-C alloy strip with gas-solid reaction in CO-CO2 atmosphere [D]. Tangshan: North China University of Science and Technology, 2020
周美洁. Ar-CO-CO2气氛下铁碳合金薄带气-固反应脱碳动力学分析 [D]. 唐山: 华北理工大学, 2020
[9] Zhou M J, Hong L K, Ai L Q, et al. Influence of CO-CO2 mixture on gas-solid decarburization reaction of Fe-C alloy sheet [J]. Iron Steel Vanad. Titanium, 2020, 41(1): 100
周美洁, 洪陆阔, 艾立群 等. CO-CO2气氛条件对铁碳合金薄带脱碳的影响 [J]. 钢铁钒钛, 2020, 41(1): 100
[10] Hou Y B, Ai L Q, Hong L K, et al. Gas-solid reaction decarburization of Fe-C alloy in CO/CO2 [J]. Iron Steel, 2020, 55(11): 133
侯耀斌, 艾立群, 洪陆阔 等. CO/CO2气氛下Fe-C合金气固反应脱碳 [J]. 钢铁, 2020, 55(11): 133
doi: 10.13228/j.boyuan.issn0449-749x.20200062
[11] Sun C J, Ai L Q, Hong L K, et al. Mechanism of carbon diffusion in solid state steelmaking from the Fe-C alloy strip through gas-solid decarburization in H2/H2O [J]. Mater. Rep., 2020, 34: 20112
孙彩娇, 艾立群, 洪陆阔 等. H2/H2O气氛下Fe-C合金气固反应脱碳机理 [J]. 材料导报, 2020, 34: 20112
[12] Zhou M J, Ai L Q, Hong L K, et al. Experimental study on decarburization of iron-carbon alloy sheet under CO-CO2 atmosphere [J]. Iron Steel Vanad. Titanium, 2020, 41(6): 94
周美洁, 艾立群, 洪陆阔 等. CO-CO2气氛条件下铁碳合金薄带脱碳试验研究 [J]. 钢铁钒钛, 2020, 41(6): 94
[13] Ai L Q, Hou Y B, Hong L K, et al. Gas-solid reaction kinetics of decarburization of Fe-C alloy strips in H2/H2O [J]. Chin. J. Eng., 2021, 43: 816
艾立群, 侯耀斌, 洪陆阔 等. H2/H2O气氛下Fe-C合金薄带气固脱碳反应动力学 [J]. 工程科学学报, 2021, 43: 816
[14] Zhou M J, Ai L Q, Hong L K, et al. Comparison of decarburization of Fe-C alloy strips in CO2 and H2O atmosphere [J]. Iron Steel, 2021, 56(5): 49
周美洁, 艾立群, 洪陆阔 等. CO2和H2O气氛下Fe-C合金薄带脱碳对比 [J]. 钢铁, 2021, 56(5): 49
doi: 10.13228/j.boyuan.issn0449-749x.20200426
[15] Meng F J, Ai L Q, Hong L K, et al. Experimental study on decarbonization of Fe-C-Mn thin strips in Ar-H2O-H2 atmosphere [J]. Iron Steel Vanad. Titanium, 2021, 42(5): 132
孟凡峻, 艾立群, 洪陆阔 等. Ar-H2O-H2气氛下Fe-C-Mn薄带脱碳试验研究 [J]. 钢铁钒钛, 2021, 42(5): 132
[16] Sun C J, Ai L Q, Hong L K, et al. Kinetics of Fe-C alloy sheets during gas-solid decarbonization in Ar-CO-CO2 [J]. Mater. Rep., 2021, 35: 24142
孙彩娇, 艾立群, 洪陆阔 等. Ar-CO-CO2气氛下铁碳合金薄带气固反应脱碳动力学研究 [J]. 材料导报, 2021, 35: 24142
[17] Zhou Y Q, Ai L Q, Hong L K, et al. Experimental study on solid state decarburization of Fe-C-Si alloy [J]. J. Mater. Metall., 2023, 22(1): 45
周玉青, 艾立群, 洪陆阔 等. Fe-C-Si合金固态脱碳实验 [J]. 材料与冶金学报, 2023, 22(1): 45
[18] Zhou Y Q, Ai L Q, Hong L K, et al. Evolution of oxide layer during solid decarburization of Fe-C-Si alloy [J]. Iron Steel, 2023, 58(12): 107
周玉青, 艾立群, 洪陆阔 等. Fe-C-Si合金固态脱碳过程氧化层演变规律 [J]. 钢铁, 2023, 58(12): 107
doi: 10.13228/j.boyuan.issn0449-749x.20230224
[19] Wang X F, Sun C J, Ai L Q, et al. Feasibility of CO2/CO substitute for H2O/H2 atmosphere for preparation of high-grade silicon steel [J]. Iron Steel, 2024, 59(11): 79
王旭锋, 孙彩娇, 艾立群 等. CO2/CO替代H2O/H2气氛制备高牌号硅钢可行性 [J]. 钢铁, 2024, 59(11): 79
[20] Wen L, Ai L Q, Hong L K, et al. Diffusion behavior of carbon and silicon in the process of preparing silicon steel using solid-state decarburization [J]. Processes, 2023, 11: 3176
[21] Zhou M J, Ai L Q, Hong L K, et al. Decarburisation of Fe-C alloy strips by gas-solid reaction in Ar-CO-CO2 [J]. Metall. Res. Technol., 2022, 119: 108
[22] Sun C J, Ai L Q, Hong L K, et al. Study on solid state steelmaking from thin cast iron sheets through decarburization in H2O-H2 [J]. Ironmak. Steelmak., 2020, 47: 1015
[23] Liu Y X, Liu X Q, Cheng L, et al. High temperature oxidation behavior of high silicon non oriented electrical steel [J]. J. Mater. Metall., 2024, 23(3): 264
刘云霞, 刘晓强, 程 林 等. 高硅无取向电工钢的高温氧化行为 [J]. 材料与冶金学报, 2024, 23(3): 264
[24] Cao G M, Shan W C, Liu X J, et al. High temperature oxidation behavior of Fe-2.2%Si steel in different atmosphere [J]. Iron Steel, 2022, 57(8): 132
曹光明, 单文超, 刘小江 等. Fe-2.2%Si钢在不同气氛下的高温氧化行为 [J]. 钢铁, 2022, 57(8): 132
doi: 10.13228/j.boyuan.issn0449-749x.20220113
[25] Li H, Lu J D, Yue C X, et al. Influence of coiling temperature on oxide scale of 1.5%Si non-oriented electrical steel [J]. Trans. Mater. Heat Treat., 2020, 41(10): 73
李 慧, 陆佳栋, 岳重祥 等. 卷取温度对1.5%Si无取向硅钢氧化皮的影响 [J]. 材料热处理学报, 2020, 41(10): 73
[1] ZHANG Yongkang, ZHAI Haimin, LI Xuqiang, LI Wensheng. Hot Corrosion Behavior of Fe-based Amorphous Coatings in Mixed Salts of Na2SO4 + K2SO4 and Na2SO4 + NaCl[J]. 中国腐蚀与防护学报, 2025, 45(1): 92-102.
No Suggested Reading articles found!