|
|
Data Analysis and Physical Model of Electrochemical Impedance Spectroscopy for Corrosion Systems: Progresses and Challenges |
GUO Yujie1, LI Yanhui2, XIA Da-Hai1( ), HU Wenbin1 |
1 School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China 2 Key Laboratory of Thermo-Fluid Science & Engineering, Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China |
|
Cite this article:
GUO Yujie, LI Yanhui, XIA Da-Hai, HU Wenbin. Data Analysis and Physical Model of Electrochemical Impedance Spectroscopy for Corrosion Systems: Progresses and Challenges. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1143-1160.
|
Abstract Electrochemical impedance spectroscopy (EIS) is one of the most important methods for studying the electrochemical corrosion behavior and failure mechanisms of metallic materials and their coating systems. With the development of corrosion electrochemistry theory, numerical calculation, and corresponding fitting software, significant progress has been made in the analysis of EIS data. Through data fitting and analysis, key parameters such as the thickness of the passive film, the resistivity distribution of the passive film, and the resistivity distribution of the coating can be obtained. When the passive film breaks down, the expression of the Faraday impedance ZF can be derived through the kinetic model, correspondingly, the parameters such as the rate constants of each electrode reaction and the thickness of the diffusion layer can be analyzed. Taking passive metals and their organic coating systems as examples, this paper reviews the applications of the electrochemical equivalent circuit model (ECM), the point defect model (PDM), the electrochemical kinetic model, the power-law model (PLM), and the Young model in analyzing the properties of oxide films, the performance of coatings, and the kinetic parameters of electrode processes. Moreover, the advantages and disadvantages of each method are discussed. Finally, the development trends of EIS data analysis and physical models are pointed out.
|
Received: 25 November 2024
32134.14.1005.4537.2024.381
|
|
Fund: National Natural Science Foundation of China(52031007);National Natural Science Foundation of China(52171077) |
Corresponding Authors:
XIA Da-Hai, E-mail: dahaixia@tju.edu.cn
|
[1] |
Wang J K, Wu S H, Ma L W, et al. Corrosion resistant coating with passive protection and self-healing property based on Fe3O4-MBT nanoparticles [J]. Corros. Commun., 2022, 7: 1
|
[2] |
Jin Z Y, Zhao Z L, Zhao T, et al. One-step preparation of inhibitor-loaded nanocontainers and their application in self-healing coatings [J]. Corros. Commun., 2021, 2: 63
|
[3] |
Hinderliter B R, Croll S G, Tallman D E, et al. Interpretation of EIS data from accelerated exposure of coated metals based on modeling of coating physical properties [J]. Electrochim. Acta, 2006, 51: 4505
|
[4] |
Bierwagen G, Tallman D, Li J P, et al. EIS studies of coated metals in accelerated exposure [J]. Prog. Org. Coat., 2003, 46: 149
|
[5] |
Lazanas A C, Prodromidis M I. Electrochemical impedance spectroscopy─a tutorial [J]. ACS Meas. Sci. Au, 2023, 3: 162
|
[6] |
Macdonald D D. The history of the point defect model for the passive state: a brief review of film growth aspects [J]. Electrochim. Acta, 2011, 56: 1761
|
[7] |
Musiani M, Orazem M E, Pébère N, et al. Constant-phase-element behavior caused by coupled resistivity and permittivity distributions in films [J]. J. Electrochem. Soc., 2011, 158: C424
|
[8] |
Young L. Anodic oxide films. Part 4.—The interpretation of impedance measurements on oxide coated electrodes on niobium [J]. Trans. Faraday Soc., 1955, 51: 1250
|
[9] |
Gabrielli C. Once upon a time there was EIS [J]. Electrochim. Acta, 2020, 331: 135324
|
[10] |
Bard A J, Faulkner L R, White H S. Electrochemical Methods: Fundamentals and Applications [M]. 3rd ed. New York: Wiley, 2022: 261
|
[11] |
Huang V M W, Vivier V, Frateur I, et al. The global and local impedance response of a blocking disk electrode with local constant-phase-element behavior [J]. J. Electrochem. Soc., 2007, 154: C89
|
[12] |
Huang V M W, Vivier V, Orazem M E, et al. The apparent constant-phase-element behavior of an ideally polarized blocking electrode: a global and local impedance analysis [J]. J. Electrochem. Soc., 2007, 154: C81
|
[13] |
Havigh M D, Nabizadeh M, Wouters B, et al. Operando odd random phase electrochemical impedance spectroscopy (ORP-EIS) for in-situ monitoring of the Zr-based conversion coating growth in the presence of (in)organic additives [J]. Corros. Sci., 2023, 223: 111469
|
[14] |
Bayet E, Huet F, Keddam M, et al. A novel way of measuring local electrochemical impedance using a single vibrating probe [J]. J. Electrochem. Soc., 1997, 144: L87
|
[15] |
Bayet E, Huet F, Keddam M, et al. Local electrochemical impedance measurement: scanning vibrating electrode technique in ac mode [J]. Electrochim. Acta, 1999, 44: 4117
|
[16] |
Xu R, Wang J. Application of local electrochemical impedance technique in corrosion research [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 287
|
|
续 冉, 王 佳. 局部电化学阻抗方法在腐蚀研究中的应用 [J]. 中国腐蚀与防护学报, 2015, 35: 287
|
[17] |
Van Gheem E, Pintelon R, Vereecken J, et al. Electrochemical impedance spectroscopy in the presence of non-linear distortions and non-stationary behaviour: Part I: theory and validation [J]. Electrochim. Acta, 2004, 49: 4753
|
[18] |
Breugelmans T, Lataire J, Muselle T, et al. Odd random phase multisine electrochemical impedance spectroscopy to quantify a non-stationary behaviour: theory and validation by calculating an instantaneous impedance value [J]. Electrochim. Acta, 2012, 76: 375
|
[19] |
Zhao T Y, Chen S, Qiu J, et al. Study on the passivation properties of austenitic stainless steel 316LN based on the point defect model [J]. Corros. Sci., 2024, 237: 112293
|
[20] |
MacDonald D D, Urquidi-Macdonald M. Distribution functions for the breakdown of passive films [J]. Electrochim. Acta, 1986, 31: 1079
|
[21] |
Agarwal P, Crisalle O D, Orazem M E, et al. Application of measurement models to impedance spectroscopy: II. determination of the stochastic contribution to the error structure [J]. J. Electrochem. Soc., 1995, 142: 4149
|
[22] |
Agarwal P, Orazem M E, Garcia-Rubio L H. Application of measurement models to impedance spectroscopy: III. evaluation of consistency with the kramers‐kronig relations [J]. J. Electrochem. Soc., 1995, 142: 4159
|
[23] |
Huet F. Software for simulating and fitting electrochemical impedances [Z]. https://lise-www.sorbonne-universite.fr/en/simad
|
[24] |
Li T S, Wu J, Frankel G S. Localized corrosion: passive film breakdown vs. pit growth stability, part VI: pit dissolution kinetics of different alloys and a model for pitting and repassivation potentials [J]. Corros. Sci., 2021, 182: 109277
|
[25] |
Sato N. An overview on the passivity of metals [J]. Corros. Sci., 1990, 31: 1
|
[26] |
Li K J, Sun L, Cao W K, et al. Pitting corrosion of 304 stainless steel in secondary water supply system [J]. Corros. Commun., 2022, 7: 43
|
[27] |
Wei X X, Zhang B, Wu B, et al. Enhanced corrosion resistance by engineering crystallography on metals [J]. Nat. Commun., 2022, 13: 726
doi: 10.1038/s41467-022-28368-8
pmid: 35132071
|
[28] |
Macdonald D D. Passivity-the key to our metals-based civilization [J]. Pure Appl. Chem., 1999, 71: 951
|
[29] |
Wagner C. Theoretical analysis of the diffusion processes determining the oxidation rate of alloys [J]. J. Electrochem. Soc., 1952, 99: 369
|
[30] |
Macdonald D D, Englehardt G. The point defect model for Bi-Layer passive films [J]. ECS Trans., 2010, 28(24): 123
|
[31] |
Yang J, Li Y H, Macdonald D D. Effects of temperature and pH on the electrochemical behaviour of alloy 600 in simulated pressurized water reactor primary water [J]. J. Nucl. Mater., 2020, 528: 151850
|
[32] |
Qiu J, Li Y H, Xu Y, et al. Effect of temperature on corrosion of carbon steel in simulated concrete pore solution under anoxic conditions [J]. Corros. Sci., 2020, 175: 108886
|
[33] |
Yang J, Li Y H, Xu A N, et al. The electrochemical properties of alloy 690 in simulated pressurized water reactor primary water: effect of temperature [J]. J. Nucl. Mater., 2019, 518: 305
doi: 10.1016/j.jnucmat.2019.03.016
|
[34] |
Sun L, Zhao T Y, Qiu J, et al. Point defect model for passivity breakdown on hyper-duplex stainless steel 2707 in solutions containing bromide at different temperatures [J]. Corros. Sci., 2022, 194: 109959
|
[35] |
Sikora E, Macdonald D D. Nature of the passive film on nickel [J]. Electrochim. Acta, 2002, 48: 69
|
[36] |
Zhang L, Macdonald D D. Segregation of alloying elements in passive systems—II. Numerical simulation [J]. Electrochim. Acta, 1998, 43: 2673
|
[37] |
Li Y H, Macdonald D D, Yang J, et al. Point defect model for the corrosion of steels in supercritical water: Part I, film growth kinetics [J]. Corros. Sci., 2020, 163: 108280
|
[38] |
Kolotinskii D A, Nikolaev V S, Stegailov V V, et al. Point defect model for the kinetics of oxide film growth on the surface of T91 steel in contact with lead-bismuth eutectic [J]. Corros. Sci., 2023, 211: 110829
|
[39] |
Xia D H, Ji Y Y, Mao Y C, et al. Localized corrosion mechanism of 2024 aluminum alloy in a simulated dynamic seawater/air interface [J]. Acta Metall. Sin., 2023, 59: 297
doi: 10.11900/0412.1961.2022.00196
|
|
夏大海, 计元元, 毛英畅 等. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制 [J]. 金属学报, 2023, 59: 297
doi: 10.11900/0412.1961.2022.00196
|
[40] |
Liu Z, Wang J R, Qin Z B, et al. A mechanistic study on stress corrosion cracking of sensitized AA5083 in a simulated waterlevel fluctuation zone: combined impedance analysis and tensile tests [J]. Corros. Sci., 2025, 245: 112701
|
[41] |
Bongiorno V, Michailidou E, Curioni M. Evaluating organic coating performance by EIS: correlation between long-term EIS measurements and corrosion of the metal substrate [J]. Mater. Corros., 2024, 75: 156
|
[42] |
Olugbade T O, Oladapo B I, Omiyale B O. Electrochemical and microstructural characterization of a precipitation hardened 17-4 steel in different environments [J]. Colloids Surf., 2025, 706A: 135795
|
[43] |
Bösing I. Modeling electrochemical oxide film growth—passive and transpassive behavior of iron electrodes in halide-free solution [J]. npj Mater. Degrad., 2023, 7: 53
|
[44] |
Tribollet B, Vivier V, Orazem M E. EIS Technique in Passivity Studies: Determination of the Dielectric Properties of Passive Films [M]. Oxford: Elsevier, 2018: 94
|
[45] |
Baril G, Galicia G, Deslouis C, et al. An impedance investigation of the mechanism of pure magnesium corrosion in sodium sulfate solutions [J]. J. Electrochem. Soc., 2007, 154: C108
|
[46] |
Benbouzid A Z, Gomes M P, Costa I, et al. A new look on the corrosion mechanism of magnesium: an EIS investigation at different pH [J]. Corros. Sci., 2022, 205: 110463
|
[47] |
Alexander C L, Tribollet B, Orazem M E. Contribution of surface distributions to constant-phase-element (CPE) behavior: 1. influence of roughness [J]. Electrochim. Acta, 2015, 173: 416
|
[48] |
Alexander C L, Tribollet B, Orazem M E. Contribution of surface distributions to constant-phase-element (CPE) behavior: 2. capacitance [J]. Electrochim. Acta, 2016, 188: 566
|
[49] |
Alexander C L, Tribollet B, Vivier V, et al. Contribution of surface distributions to constant-phase-element (CPE) behavior: 3. adsorbed intermediates [J]. Electrochim. Acta, 2017, 251: 99
|
[50] |
Yamamoto T, Yamamoto Y. Electrical properties of the epidermal stratum corneum [J]. Med. Biol. Eng., 1976, 14: 151
pmid: 940370
|
[51] |
Hirschorn B, Orazem M E, Tribollet B, et al. Constant-phase-element behavior caused by resistivity distributions in films: I. theory [J]. J. Electrochem. Soc., 2010, 157: C452
|
[52] |
Bojinov M, Fabricius G, Laitinen T, et al. Coupling between ionic defect structure and electronic conduction in passive films on iron, chromium and iron-chromium alloys [J]. Electrochim. Acta, 2000, 45: 2029
|
[53] |
Schiller C A, Strunz W. The evaluation of experimental dielectric data of barrier coatings by means of different models [J]. Electrochim. Acta, 2001, 46: 3619
|
[54] |
Hirschorn B, Orazem M E, Tribollet B, et al. Determination of effective capacitance and film thickness from constant-phase-element parameters [J]. Electrochim. Acta, 2010, 55: 6218
|
[55] |
Qiao C, Wang Y Z, Jiang J L, et al. Understanding the corrosion protection effect by surface oxide film to underlying Sn solder substrate under thermal exposure condition [J]. Corros. Sci., 2024, 230: 111930
|
[56] |
Batalha W C, Jorge Junior A M, Mantel M, et al. The study of passive film's resistivity distribution to crystalline Fe-based pseudo high entropy alloys: The use of measurement model and Cole-Cole regression [J]. Corros. Sci., 2024, 230: 111905
|
[57] |
Liao H Q, Watson W, Dizon A, et al. Physical properties obtained from measurement model analysis of impedance measurements [J]. Electrochim. Acta, 2020, 354: 136747
|
[58] |
Xia D H, Pan C C, Guo Y J, et al. Impedance analysis of 7050 Al-alloy in NaCl solution under cavitation erosion condition [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 1196
|
|
夏大海, 潘成成, 郭玉杰 等. EIS研究7050铝合金在NaCl溶液空蚀作用下的界面状态与腐蚀机制 [J]. 中国腐蚀与防护学报, 2025, 45: 1196
|
[59] |
Ter-Ovanessian B, Galipaud J, Marcelin S, et al. Dielectric bi-layer model for electrochemical impedance spectroscopy characterisation of oxide film [J]. Electrochim. Acta, 2024, 492: 144307
|
[60] |
Li Y H, Bai Z Y, Ding S M, et al. Electrochemical techniques and mechanisms for the corrosion of metals and alloys in sub- and supercritical aqueous systems [J]. J. Supercrit. Fluids, 2023, 194: 105835
|
[61] |
Wang J M, Qian S D, Li Y H, et al. Passivity breakdown on 436 ferritic stainless steel in solutions containing chloride [J]. J. Mater. Sci. Technol., 2019, 35: 637
doi: 10.1016/j.jmst.2018.10.030
|
[62] |
Bacon R C, Smith J J, Rugg F M. Electrolytic resistance in evaluating protective merit of coatings on metals [J]. Ind. Eng. Chem., 1948, 40(1): 161
|
[63] |
Kinsella E M, Mayne J E O. Ionic conduction in polymer films I. Influence of electrolyte on resistance [J]. Br. Polym. J., 1969, 1: 173
|
[64] |
Mayne J E O. How paints prevent corrosion [J]. Anti-Corros. Methods Mater., 1954, 1: 286
|
[65] |
Amirudin A, Thieny D. Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals [J]. Prog. Org. Coat., 1995, 26: 1
|
[66] |
Murray J N. Electrochemical test methods for evaluating organic coatings on metals: an update. Part II: single test parameter measurements [J]. Prog. Org. Coat., 1997, 31: 255
|
[67] |
Murray J N. Electrochemical test methods for evaluating organic coatings on metals: an update. Part III: multiple test parameter measurements [J]. Prog. Org. Coat., 1997, 31: 375
|
[68] |
Murray J N. Electrochemical test methods for evaluating organic coatings on metals: an update. Part I. introduction and generalities regarding electrochemical testing of organic coatings [J]. Prog. Org. Coat., 1997, 30: 225
|
[69] |
Beaunier L, Epelboin I, Lestrade J C, et al. Etude electrochimique, et par microscopie electronique a balayage, du fer recouvert de peinture [J]. Surf. Technol., 1976, 4: 237
|
[70] |
Agarwal P, Orazem M E, Garcia‐Rubio L H. Measurement models for electrochemical impedance spectroscopy: I. demonstration of applicability [J]. J. Electrochem. Soc., 1992, 139: 1917
|
[71] |
Amand S, Musiani M, Orazem M E, et al. Constant-phase-element behavior caused by inhomogeneous water uptake in anti-corrosion coatings [J]. Electrochim. Acta, 2013, 87: 693
|
[72] |
Nguyen A S, Musiani M, Orazem M E, et al. Impedance analysis of the distributed resistivity of coatings in dry and wet conditions [J]. Electrochim. Acta, 2015, 179: 452
|
[73] |
Meng F D, Liu L, Cui Y, et al. Evaluation of coating resistivity for pigmented/unpigmented epoxy coatings under marine alternating hydrostatic pressure [J]. J. Mater. Sci. Technol., 2021, 64: 165
doi: 10.1016/j.jmst.2019.09.011
|
[74] |
Li Y N, Wang J, Zhang W. Comparative studies on the deterioration process of organic coatings under immersed and cyclic wet-dry conditions by EIS [J]. J. Electrochem., 2010, 16: 393
|
|
李玉楠, 王 佳, 张 伟. 有机涂层在浸泡和干湿循环条件下劣化过程的EIS对比研究 [J]. 电化学, 2010, 16: 393
|
[75] |
Liu B, Fang Z G, Wang T, et al. Electrochemical behaviors of organic coating/matal substrate under simulated deep sea environment Part Ⅰ. effects of seawater pressure on transportation behavior of water through coating and coating's protective performance [J]. J. Electrochem., 2010, 16: 401
|
|
刘 斌, 方志刚, 王 涛 等. 模拟深海压力环境下有机涂料/基底金属腐蚀电化学行为研究Ⅰ. 海水压力对水在涂层中传输行为和涂层防护性能的影响 [J]. 电化学, 2010, 16: 401
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|