Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (3): 664-674    DOI: 10.11902/1005.4537.2024.150
Current Issue | Archive | Adv Search |
Preparation of CeO2@Zr-MOF Composites and Their Effect on Corrosion Protectiveness of Epoxy Coatings on Galvanized Steel Plate
CHEN Lijuan1, CHAO Liuwei2, ZHAO Jingmao2()
1.Beijing Engineering Branch, China Petroleum Engineering & Construction Co., Ltd., Beijing 100085, China
2.College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Cite this article: 

CHEN Lijuan, CHAO Liuwei, ZHAO Jingmao. Preparation of CeO2@Zr-MOF Composites and Their Effect on Corrosion Protectiveness of Epoxy Coatings on Galvanized Steel Plate. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 664-674.

Download:  HTML  PDF(16061KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In this study, CeO2 was synthesized on zirconium metal oxide skeleton (Zr-MOF) material by hydrothermal synthesis with Ce(NO3)3 as cerium source, ammonia as precipitant, and ethylene glycol as dispersant. The micro-morphology, structureand chemical composition of the composites were characterized by means of scanning electron microscope, transmission electron microscope, X-ray diffractometer, FTIR spectroscopy, X-ray photoelectron spectroscopy, and specific surface area analyzer. Then, as a filler, different amount of CeO2@Zr-MOF was mixed with epoxy resin to prepare variouse CeO2@Zr-MOF-epoxy rein coatings on galvanized steel plate. Afterwards, the effect of CeO2@Zr-MOF on the protectiveness, mechanical properties and hydrophobicityof the CeO2@Zr-MOF coatings were investigated via electrochemical test, salt spray test, hardness test, adhesion test, and contact angle test etc. The results show that CeO2 particles were successfully deposited on the surface of Zr-MOF, while the prepared CeO2@Zr-MOF has a regular morphology with CeO2 particles of mean diameter 200 nm uniformly distributed on the surface, which presents a uniform and dense porous structure with pore size ranging 5-20 nm, and average specific surface area of 99.48 m2/g; The hardness of the epoxy resin coating with CeO2@Zr-MOF is about 11HV, which is about 111% higher than that of pure epoxy resin coating. The adhesion of the coating is about 3 MPa, which is about 18% higher than that of the pure epoxy resin coating, and the contact angle is about 70º for water, which is 12°-14° higher than that of the pure epoxy resin coating; The anticorrosive performance of CeO2@Zr-MOF epoxy resin coating is significantly better than that of pure epoxy resin coating. Among them, the impedance modulus value of the epoxy resin coating with 1%CeO2@Zr-MOF is 5.49 × 1010 Ω·cm2 at frequency 0.01 Hz after 60 d of immersion in 3.5% NaCl solution, which is three orders of magnitude higher than that of the pure epoxy resin coating. Furthermore after 400 h of salt spray test, the coating is almost no signs of corrosion, showing better protectiveness for galvanized steel plate

Key words:  Zr-MOF      CeO2      organic coating      ZMA coated steel      corrosion and protection     
Received:  14 May 2024      32134.14.1005.4537.2024.150
ZTFLH:  TG174.4  
Fund: National Natural Science Foundation of China(52371046)
Corresponding Authors:  ZHAO Jingmao, E-mail: jingmaozhao@126.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.150     OR     https://www.jcscp.org/EN/Y2025/V45/I3/664

Fig.1  Schematic flow diagram of the preparation of Zr-MOF
Fig.2  Schematic flow diagram of the preparation of CeO2@Zr-MOF
Fig.3  SEM images of CeO2@Zr-MOF in different magnification: (a) low image, (b) high image
Fig.4  TEM images of CeO2@Zr-MOFin different magnification(a-d) and TEM-EDS results of CeO2@Zr-MOF (e-h): (e) carbon, (f) oxygen, (g) zirconium, (h) cerium
Fig.5  XRD pattern of CeO2@Zr-MOF
Fig.6  FTIR spectrum of MOF and CeO2@Zr-MOF
Fig.7  XPS spectrum of CeO2@Zr-MOF material (a), Zr 3d high-resolution XPS spectrum of CeO2@Zr-MOF material (b) and Ce 3d (c)
Fig.8  Nitrogen adsorption-desorption curve for CeO2@Zr-MOF
Fig.9  Chemical structural formula of Zr-MOF[18]
Fig.10  Hardness of epoxy coatings after adding different ratios of CeO2@Zr-MOF
Fig.11  Adhesion strengths of CeO2@Zr-MOF epoxy coatings with different ratios on zinc-magnesium-aluminum steel substrate
Fig.12  Results of contact angle tests of epoxy coatings with different ratios of CeO2@Zr-MOF
Fig.13  EIS test results of CeO2@Zr-MOF epoxy coatings with different additions: (a1-a3) EP, (b1-b3) 0.5%CeO2@Zr-MOF/EP, (c1-c3) 1%CeO2@Zr-MOF/EP, (d1-d3) 2%CeO2@Zr-MOF/EP
Fig.14  Equivalent circuit diagram for CeO2@Zr-MOF epoxy coating
SamplesTime / dCPEcRc / Ω·cm2Cc / F·cm2CPEdlRct / Ω·cm2Cc / F·cm2
Y1 / Ω-1·cm-2·s nn1Y2 / Ω-1·cm-2·s nn2
EP07.00 × 10-1114.24 × 1087.00 × 10-111.34 × 10-1017.59 × 1091.34 × 10-10
128.99 × 10-110.974.11 × 1088.12 × 10-111.44 × 10-100.848.05 × 1091.48 × 10-10
246.54 × 10-110.984.61 × 1086.09 × 10-118.37 × 10-110.798.18 × 1088.36 × 10-11
367.08 × 10-1118.91 × 1077.08 × 10-111.73 × 10-1013.30 × 1081.73 × 10-10
489.71 × 10-110.953.35 × 1077.38 × 10-112.45 × 10-70.788.14 × 1073.30 × 10-7
607.83 × 10-110.963.16 × 1076.49 × 10-111.60 × 10-80.331.40 × 1073.63 × 10-8
0.5%CeO2@Zr-MOF06.03 × 10-1111.94 × 1096.03 × 10-113.89 × 10-100.773.03 × 10105.44 × 10-11
126.69 × 10-110.972.57 × 1096.34 × 10-111.13 × 10-100.768.00 × 10101.11 × 10-10
246.66 × 10-110.973.86 × 1096.24 × 10-113.92 × 10-100.539.06 × 10102.45 × 10-10
366.52 × 10-110.984.60 × 1096.31 × 10-113.16 × 10-110.741.68 × 10113.63 × 10-11
484.87 × 10-1112.60 × 1094.87 × 10-114.27 × 10-110.741.60 × 10115.47 × 10-11
604.69 × 10-110.983.21 × 1094.72 × 10-113.31 × 10-1113.94 × 10103.31 × 10-11
1%CeO2@Zr-MOF05.70 × 10-1114.49 × 1095.70 × 10-111.47 × 10-1112.93 × 10101.47 × 10-11
127.00 × 10-1116.73 × 1097.00 × 10-117.61 × 10-1118.90 × 10107.61 × 10-11
245.01 × 10-110.997.69 × 1094.98 × 10-111.18 × 10-100.709.85 × 10101.19 × 10-10
366.44 × 10-110.976.27 × 1096.07 × 10-112.47 × 10-110.631.43 × 10113.74 × 10-11
485.84 × 10-1112.39 × 1095.84 × 10-113.58 × 10-110.721.34 × 10114.99 × 10-11
606.20 × 10-110.986.11 × 1095.98 × 10-112.70 × 10-110.681.11 × 10113.86 × 10-11
2%CeO2@Zr-MOF06.68 × 10-110.974.34 × 1096.69 × 10-112.54 × 10-110.966.34 × 10102.58 × 10-11
126.80 × 10-110.975.74 × 1096.70 × 10-112.46 × 10-110.648.27 × 10101.10 × 10-11
244.90 × 10-110.986.15 × 1094.75 × 10-111.03 × 10-110.851.04 × 10111.10 × 10-11
366.75 × 10-110.971.72 × 1096.38 × 10-114.79 × 10-110.672.11 × 10104.83 × 10-11
484.68 × 10-1114.54 × 1094.68 × 10-111.81 × 10-1111.52 × 10101.81 × 10-11
609.64 × 10-110.984.74 × 1099.52 × 10-113.85 × 10-110.801.87 × 10103.62 × 10-11
Table 1  EIS fitting parameters of pure EP coatings immersed in 3.5%NaCl solution for different times and different additions of CeO2@Zr-MOF/EP coatings on ZMA coated steel
Fig.15  Rc (a) and Rct (b) values of CeO2@Zr-MOF epoxy coatings with different additions at different immersion times
Fig.16  Salt spray experimental results of Zr-MOF scratch coatings 0 h (a1-d1) and after 400 h (a2-d2): EP (a), 0.5% CeO2@Zr-MOF/EP (b), 1%CeO2@Zr-MOF/EP (c) and 2%CeO2@Zr-MOF/EP (d)
Fig.17  Schematic diagram of corrosion protection mechanism of CeO2@Zr-MOF coating
[1] Long W J, Tang J, Luo Q L, et al. Corrosion inhibition performance of biomass-derived carbon dots on Q235 steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 807
龙武剑, 唐 杰, 罗启灵 等. 生物质碳点对Q235钢的缓蚀性能研究 [J]. 中国腐蚀与防护学报, 2024, 44: 807
doi: 10.11902/1005.4537.2023.233
[2] Hu Y F, Cao X K, Ma X Z, et al. Fluorescent nanofiller modified epoxy coatings for visualization of coating degradation [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 460
胡云飞, 曹祥康, 马小泽 等. 采用荧光纳米填料改性环氧涂层实现缺陷可视化 [J]. 中国腐蚀与防护学报, 2023, 43: 460
doi: 10.11902/1005.4537.2022.202
[3] Chen Y N, Wu L, Yao W H, et al. Development of metal-organic framework (MOF) decorated graphene oxide/MgAl-layered double hydroxide coating via microstructural optimization for anti-corrosion micro-arc oxidation coatings of magnesium alloy [J]. J. Mater. Sci. Technol., 2022, 130: 12
doi: 10.1016/j.jmst.2022.03.039
[4] Dao X L, Nie M, Sun H, et al. Electrochemical performance of metal-organic framework MOF(Ni) doped graphene [J]. Int. J. Hydrog. Energ., 2022, 47: 16741
[5] Yu F, Wang X, Zhang Z. Research progress of nanofillers for epoxy anti-corrosion coatings [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 220
于 芳, 王 翔, 张 昭. 纳米填料在环氧防腐涂层中的应用研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 220
[6] Kitagawa S, Kitaura R, Noro S I. Functional porous coordination polymers [J]. Angew. Chem.-Int. Edit., 2004, 43: 2334
[7] Yaghi O M, Li G M, Li H L. Selective binding and removal of guests in a microporous metal-organic framework [J]. Nature, 1995, 378: 703
[8] Zhang Z C, Chen Y F, He S, et al. Hierarchical Zn/Ni-MOF-2 nanosheet-assembled hollow nanocubes for multicomponent catalytic reactions [J]. Angew. Chem., 2014, 126: 12725
[9] Panella B, Hirscher M, Pütter H, et al. Hydrogen adsorption in metal-organic frameworks: Cu-MOFs and Zn-MOFs compared [J]. Adv. Funct. Mater., 2006, 16: 520
[10] Chen H D, Yu Z X, Cao K Y, et al. Preparation of a BTA-UIO-GO nanocomposite to endow coating systems with active inhibition and passive anticorrosion performances [J]. New J. Chem., 2021, 45: 16069
[11] Chen S R, Chen W G, Qian Y, et al. Preparation and perfromance of rare earth cerium modified graphene oxide/waterborne epoxy resin composite coating [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 107
陈施润, 陈文革, 钱 颖 等. 稀土铈改性石墨烯/水性环氧树脂复合涂料涂装技术研究 [J]. 中国腐蚀与防护学报, 2024, 44: 107
[12] Xuan X Y, Qu S P, Zhao X Y. Preparation and performance of CeO2@MWCNTs/EP composite coatings [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 992
轩星雨, 屈少鹏, 赵行娅. CeO2@MWCNTs/EP复合涂层的制备与性能研究 [J]. 中国腐蚀与防护学报, 2023, 43: 992
doi: 10.11902/1005.4537.2022.307
[13] Cai G Y, Wang H W, Zhao W H, et al. Effect of Nano-CeO2 on anticorrosion performance for polyurethane coating [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 411
蔡光义, 王浩伟, 赵苇杭 等. 添加纳米CeO2对聚氨酯涂层防腐性能的影响 [J]. 中国腐蚀与防护学报, 2017, 37: 411
doi: 10.11902/1005.4537.2016.147
[14] Wang T Y, Zhao C, Meng L H, et al. In-situ-construction of BiOI/UiO-66 heterostructure via nanoplate-on-octahedron: a novel p-n heterojunction photocatalyst for efficient sulfadiazine elimination [J]. Chem. Eng. J., 2023, 451: 138624
[15] Wu Y M, Wu Y H, Sun Y X, et al. 2D nanomaterials reinforced organic coatings for marine corrosion protection: state of the art, challenges, and future prospectives [J]. Adv. Mater., 2024, 18: e2312460
[16] Li Y H, Yi X H, Li Y X, et al. Robust Cr(VI) reduction over hydroxyl modified UiO-66 photocatalyst constructed from mixed ligands: performances and mechanism insight with or without tartaric acid [J]. Environ. Res., 2021, 201: 111596
[17] Ramezanzadeh M, Ramezanzadeh B, Bahlakeh G, et al. Development of an active/barrier bi-functional anti-corrosion system based on the epoxy nanocomposite loaded with highly-coordinated functionalized zirconium-based nanoporous metal-organic framework (Zr-MOF) [J]. Chem. Eng. J., 2021, 408: 127361
[18] Bai Y, Dou Y B, Xie L H, et al. Zr-based metal-organic frameworks: design, synthesis, structure, and applications [J]. Chem. Soc. Rev., 2016, 45: 2327
doi: 10.1039/c5cs00837a pmid: 26886869
[19] Wang J B, Zhao J M, Tabish M, et al. Intelligent anticorrosion coating based on mesostructured BTA@mCeO2/g-C3N4 nanocomposites for inhibiting the filiform corrosion of Zn-Mg-Al coated steel [J]. Corros. Sci., 2023, 221: 111331
[20] Kordas G. Nanocontainers (CeO2): synthesis, characterization, properties, and anti-corrosive application [A]. HussainCM, VermaC. Sustainable Corrosion Inhibitors II: Synthesis, Design, and Practical Applications [M]. Washington: American Chemical Society, 2021, 27: 177
[21] Prosek T, Hagström J, Persson D, et al. Effect of the microstructure of Zn-Al and Zn-Al-Mg model alloys on corrosion stability [J]. Corros. Sci., 2016, 110: 71
[22] Ramezanzadeh M, Ramezanzadeh B, Mahdavian M, et al. Development of metal-organic framework (MOF) decorated graphene oxide nanoplatforms for anti-corrosion epoxy coatings [J]. Carbon, 2020, 161: 231
[23] He H M, Sun Q, Gao W Y, et al. A stable metal-organic framework featuring a local buffer environment for carbon dioxide fixation [J]. Angew. Chem., 2018, 130: 4747
[24] Bůžek D, Demel J, Lang K. Zirconium metal-organic framework UiO-66: stability in an aqueous environment and its relevance for organophosphate degradation [J]. Inorg. Chem., 2018, 57: 14290
doi: 10.1021/acs.inorgchem.8b02360 pmid: 30371080
[1] LI Zhuoxuan, CAO Yanhui, LI Chongjie, LI Hui, ZHANG Xiaoming, YONG Xingyue. Relationship Between Corrosion Failure Degree of Organic Coatings and Mechanical Properties for Dissimilar Metal Assamblies[J]. 中国腐蚀与防护学报, 2024, 44(3): 679-690.
[2] XUAN Xingyu, QU Shaopeng, ZHAO Xingya. Preparation and Performance of CeO2@MWCNTs/EP Composite Coatings[J]. 中国腐蚀与防护学报, 2023, 43(5): 992-1002.
[3] GU Yuhui, DONG Liang, SONG Qinfeng. Preparation of Micro Metal Oxide pH Electrode and Its Application in Corrosion and Protection[J]. 中国腐蚀与防护学报, 2023, 43(5): 971-982.
[4] MENG Fandi, GAO Haodong, LIU Li, CUI Yu, LIU Rui, WANG Fuhui. Preparation and Anticorrosive Performance of a Basalt Organic Coating for Deep Sea Coupled Pressure-fluid Environment[J]. 中国腐蚀与防护学报, 2023, 43(4): 704-712.
[5] CHEN Yifan, MENG Fandi, QU Youyi, FANG Zhiqing, LIU Li, WANG Fuhui. One-step Synthesis of Superhydrophobic Polyaniline Capsules and Its Effect on Corrosion Resistance of Organic Coatings[J]. 中国腐蚀与防护学报, 2023, 43(2): 345-351.
[6] WANG Tong, WANG Wei. Distribution of Relaxation Time of Polydimethylsiloxane Coatings During Self-healing Process[J]. 中国腐蚀与防护学报, 2023, 43(2): 337-344.
[7] ZHAO Yanliang, ZHAO Jingmao. Research Progress on Protection and Self-healing Performance of Layered Double Hydroxides Coatings on Mg-alloy[J]. 中国腐蚀与防护学报, 2023, 43(1): 1-5.
[8] WANG Weijie, HAN Jicheng, MAO Yang, GUAN Zichao, DI Zhigang, MIAO Lei, MA Shengjun. Research Progress on Monitoring Techniques for Corrosion Under Insulating Layer[J]. 中国腐蚀与防护学报, 2023, 43(1): 22-28.
[9] LUAN Hao, MENG Fandi, LIU Li, CUI Yu, LIU Rui, ZHENG Hongpeng, WANG Fuhui. Preparation and Anticorrosion Performance of M-phenylenediamine-graphene Oxide/Organic Coating[J]. 中国腐蚀与防护学报, 2021, 41(2): 161-168.
[10] JIANG Bochen, CAO Jiangdong, CAO Xueyu, WANG Jiantao, ZHANG Shaopeng. Hot Corrosion Behavior of Gd2(Zr1-xCex)2O7 Thermal Barrier Coating Ceramics Exposed to Artificial Particulates of CMAS[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
[11] CAO Jingyi, WANG Zhiqiao, LI Liang, MENG Fandi, LIU Li, WANG Fuhui. Failure Mechanism of Organic Coating with Modified Graphene Under Simulated Deep-sea Alternating Hydrostatic Pressure[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
[12] Zhengquan WANG,Yantao LI,Weichen XU,Lihui YANG,Congtao SUN. Analysis of Global Research Status and Development Trends in the Field of Corrosion and Protection: Based on Bibliometrics and Information Visualization Analysis[J]. 中国腐蚀与防护学报, 2019, 39(3): 201-214.
[13] Qi GUI, Dajiang ZHENG, Guangling SONG. Electrochemically Accelerated Evaluation of Protectiveness for an Alkyd Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[14] Fandi MENG, Li LIU, Ying LI, Fuhui WANG. Embedded Microelectrode for In situ Electrochemical Impedance Spectroscopy Measurement of Organic Coating Under Marine Alternating Hydrostatic Pressure[J]. 中国腐蚀与防护学报, 2017, 37(6): 561-566.
[15] Guangyi CAI,Haowei WANG,Weihang ZHAO,Zehua DONG. Effect of Nano-CeO2 on Anticorrosion Performance for Polyurethane Coating[J]. 中国腐蚀与防护学报, 2017, 37(5): 411-420.
No Suggested Reading articles found!