|
|
Cyclic Oxidation Behavior of TiAl Alloy with Electrodeposited SiO2 Coating |
YAN Haojie1, YIN Ruozhan1, WANG Wenjun2, SUN Qingqing1, WU Liankui1( ), CAO Fahe1 |
1 School of Materials, Sun Yat-sen University, Shenzhen 518107, China 2 AECC Hunan Aviation Powerplant Research Institute, Zhuzhou 412002, China |
|
Cite this article:
YAN Haojie, YIN Ruozhan, WANG Wenjun, SUN Qingqing, WU Liankui, CAO Fahe. Cyclic Oxidation Behavior of TiAl Alloy with Electrodeposited SiO2 Coating. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 81-91.
|
Abstract To improve the oxidation resistance of TiAl alloy in the thermal cycling environment, SiO2 coating was electrodeposited on the surface of a vacuum cast γ-TiAl alloy. The cyclic oxidation behavior of the SiO2 coating/TiAl alloy in air at 900 oC was studied, with each cycle consists of oxidation at 900 oC for 50 min and cooling to room temperature for 10 min. The failure mechanism of the electrodeposited SiO2 coating was analyzed. Results showed that the electrodeposited SiO2 coating can effectively improve the cyclic oxidation resistance of TiAl alloy. Furthermore, the SiO2 coating can react with the TiAl substrate to form Ti5Si3 and promote the selective oxidation of TiAl to form an Al2O3 scale, which acts as a diffusion barrier. However, due to the thermal mismatch between the SiO2 coating and TiAl alloy, thermal stress concentration in the coating will lead to the initiation of cracks. The cracks provide channels for the inward diffusion of oxygen and the outward diffusion of matrix elements, resulting in the generation of a large number of clusters on the surface of the oxide scale, thus destroying the continuous and dense structure of the SiO2 coating. However, no spallation can be observed on the SiO2 coating after cyclic oxidation for 200 h, indicating that the SiO2 coating still maintains a certain high temperature protection ability.
|
Received: 06 August 2024
32134.14.1005.4537.2024.246
|
|
Fund: National Natural Science Foundation of China(52271084; 51971205);Guangdong Basic and Applied Basic Research Foundation(2021B1515020056) |
Corresponding Authors:
WU Liankui, E-mail: wulk5@mail.sysu.edu.cn
|
1 |
Bewlay B P, Nag S, Suzuki A, et al. TiAl alloys in commercial aircraft engines [J]. Mater. High Temp., 2016, 33: 549
|
2 |
Dimiduk D M. Gamma titanium aluminide alloys-an assessment within the competition of aerospace structural materials [J]. Mater. Sci. Eng., 1999, 263A: 281
|
3 |
Lang C, Schütze M. TEM investigations of the early stages of TiAl oxidation [J]. Oxid. Met., 1996, 46: 255
|
4 |
Wang D S, Tian Z J, Chen Z Y, et al. High-temperature oxidation resistance coatings on TiAl alloy surface [J]. J. Chin. Soc. Corros. Prot., 2009, 29: 1
|
|
王东生, 田宗军, 陈志勇 等. TiAl合金表面抗高温氧化涂层研究 [J]. 中国腐蚀与防护学报, 2009, 29: 1
|
5 |
Cheng X Y, Wan X J, Shen J N. The effect of Nb on the oxidation behavior of TiAl alloy at high temperature [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 69
|
|
程晓英, 万晓景, 沈嘉年. 合金元素Nb在TiAl高温氧化行为中的作用 [J]. 中国腐蚀与防护学报, 2002, 22: 69
|
6 |
Wang F H, Tang Z L, Wu W T. Effect of chromium on the oxidation resistance of TiAl intermetallics [J]. Oxid. Met., 1997, 48: 381
|
7 |
Dong L M, Cui Y Y, Yang R, et al. Effects of element Si on oxidation resistance of TiAl alloys [J]. Acta Metall. Sin., 2004, 40: 383
|
|
董利民, 崔玉友, 杨 锐 等. 元素Si对TiAl合金抗氧化性能的影响 [J]. 金属学报, 2004, 40: 383
|
8 |
Wu Y, Umakoshi Y, Li X W, et al. Isothermal oxidation behavior of Ti-50Al alloy with Y additions at 800 and 900 oC [J]. Oxid. Met., 2006, 66: 321
|
9 |
Pflumm R, Donchev A, Mayer S, et al. High-temperature oxidation behavior of multi-phase Mo-containing γ-TiAl-based alloys [J]. Intermetallics, 2014, 53: 45
|
10 |
Shida Y, Anada H. The influence of ternary element addition on the oxidation behaviour of TiAl intermetallic compound in high temperature air [J]. Corros. Sci., 1993, 35: 945
|
11 |
Huang J, Zhao F, Cui X Y, et al. Long-term oxidation behavior of silicon-aluminizing coating with an in-situ formed Ti5Si3 diffusion barrier on γ-TiAl alloy [J]. Appl. Surf. Sci., 2022, 582: 152444
|
12 |
Xu J X, Geng S J, Wang J L, et al. Effect of coating process temperatures on hot corrosion behavior induced by deposit of sulfates salts in air at 750 oC for CVD aluminized coatings on K452 superalloy [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 612
|
|
徐佳新, 耿树江, 王金龙 等. K452合金表面CVD渗铝涂层制备温度对其750 ℃硫酸盐热腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 612
doi: 10.11902/1005.4537.2023.182
|
13 |
Li Y, Ma K, Xu J J, et al. Microstructure evolution and cyclic oxidation performance of Cr2AlC as active diffusion barrier for NiCrAlY coating on TiAl alloy [J]. Corros. Sci., 2024, 226: 111696
|
14 |
Yang L L, Chen M H, Wang J L, et al. Oxidation of duplex coatings with different thickness ratio of the inner nanocrystalline layer to the outer NiCrAlY one [J]. Corros. Sci., 2018, 143: 136
|
15 |
Bik M, Galetz M, Mengis L, et al. Oxidation behaviour of uncoated and PDC-SiAlOC glass-coated TiAl at 750 oC in dry and humid air [J]. Appl. Surf. Sci., 2023, 632: 157601
|
16 |
Ai P, Liu L X, Li X G, et al. Influence of TiAlSiN coatings on high temperature oxidation resistance of γ-TiAl based alloys [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 306
|
|
艾 鹏, 刘礼祥, 李晓罡 等. TiAlSiN涂层对γ-TiAl基合金抗高温氧化性能的影响 [J]. 中国腐蚀与防护学报, 2019, 39: 306
|
17 |
Wu J J, Yan H J, Cao F H, et al. Oxidation performance and interfacial reaction behavior of glass-ceramic coating on TiAl alloy with electrodeposited SiO2 interlayer [J]. Surf. Coat. Technol., 2021, 422: 127495
|
18 |
Liu S Y, Geng S J, Wang J L, et al. High temperature oxidation and solid Na2SO4 induced corrosion of CVD aluminide coating on K444 alloy in air [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 553
|
|
刘姝妤, 耿树江, 王金龙 等. K444合金表面CVD铝化物涂层的高温氧化和固态Na2SO4诱导的空气腐蚀 [J]. 中国腐蚀与防护学报, 2023, 43: 553
doi: 10.11902/1005.4537.2022.241
|
19 |
Yu B, Li Z, Zhou K X, et al. High-temperature performance of MoSi2 modified YGYZ thermal barrier coating [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 812
|
|
宇 波, 李 彰, 周凯旋 等. MoSi2改性YGYZ作为陶瓷面层的多层热障涂层体系的抗高温氧化性能研究 [J]. 中国腐蚀与防护学报, 2023, 43: 812
|
20 |
Xie W, Fu Q G, Cheng C Y, et al. Experimental and theoretical study on the effect of different rare-earth oxides on the high-temperature stability of SiO2 glass at 1973 K [J]. Ceram. Int., 2020, 46: 24371
|
21 |
Taniguchi S, Shibata T, Katoh N. Improvement in the high-temperature oxidation resistance of TiAl by sol-derived SiO2 coating [J]. J. Japan Inst. Met. Mater., 1993, 57: 666
|
22 |
Teng S J, Liang W, Li Z L, et al. Improvement of high-temperature oxidation resistance of TiAl-based alloy by sol-gel method [J]. J. Alloy. Compd., 2008, 464: 452
|
23 |
Wang C, Wang W, Zhu S L, et al. Oxidation inhibition of γ-TiAl alloy at 900 oC by inorganic silicate composite coatings [J]. Corros. Sci., 2013, 76: 284
|
24 |
Wu L K, Wu W Y, Song J L, et al. Enhanced high temperature oxidation resistance for γ-TiAl alloy with electrodeposited SiO2 film [J]. Corros. Sci., 2018, 140: 388
|
25 |
Wu L K, Wu J J, Wu W Y, et al. High temperature oxidation resistance of γ-TiAl alloy with pack aluminizing and electrodeposited SiO2 composite coating [J]. Corros. Sci., 2019, 146: 18
|
26 |
Wang Q, Wu W Y, Jiang M Y, et al. Improved oxidation performance of TiAl alloy by a novel Al-Si composite coating [J]. Surf. Coat. Technol., 2020, 381: 125126
|
27 |
Xue T, Zhang G H, Yang Y B. Thermal-stress analysis on several kinds of structures of TSV [J]. Microelectronics, 2015, 45: 820
|
|
薛 彤, 张国华, 杨轶博. 多种结构硅通孔热应力仿真分析 [J]. 微电子学, 2015, 45: 820
|
28 |
Liu W Y, Yu W S, Shen S P. Chemomechanical analysis for interfacial reactions between γ-TiAl alloy and glass-ceramic coating in micro/nano scale [J]. J. Am. Ceram. Soc., 2018, 101: 5675
|
29 |
Clemens H, Kestler H. Processing and applications of intermetallic γ-TiAl-based alloys [J]. Adv. Eng. Mater., 2000, 2: 551
|
30 |
Wen Y F, Zeng X S, Hu Z F, et al. A comparative first-principles study of tetragonal TiAl and Ti4Nb3Al9 intermetallic compounds [J]. Intermetallics, 2018, 101: 72
|
31 |
Zhang W J, Reddy B V, Deevi S C. Physical properties of TiAl-base alloys [J]. Scr. Mater., 2001, 45: 645
|
32 |
Alfonsetti R, Lozzi L, Passacantando M, et al. XPS studies on SiO x thin films [J]. Appl. Surf. Sci., 1993, 70-71: 222
|
33 |
Chi M Y, Sun X N, Lozano-Blanco G, et al. XPS and FTIR investigations of the transient photocatalytic decomposition of surface carbon contaminants from anatase TiO2 in UHV starved water/oxygen environments [J]. Appl. Surf. Sci., 2021, 570: 151147
|
34 |
Shi L, Jiang C P, Zhao R Y, et al. Effect of Al2O3 nanoparticles additions on wear resistance of plasma electrolytic oxidation coatings on TC4 alloys [J]. Ceram. Int., 2024, 50: 18484
|
35 |
Yan H J, Tai Z F, Wu L K, et al. Improved high-temperature oxidation resistance of TC4 alloy by electrodeposited SiO2 coating [J]. Corros. Commun., 2021, 3: 34
|
36 |
Lefez B, Boileau S, Nachbaur V, et al. Oxidation behavior of Beta21s titanium alloycoated with a SiO2-Sol-Gel [J]. SSRN Electronic Journal, 2022
|
37 |
Yan H J, Wu L K, Cao F H. Development of SiO2-based protective coatings on TiAl alloy [J]. Mater. China, 2022, 41: 345
|
|
严豪杰, 伍廉奎, 曹发和. TiAl合金表面SiO2防护涂层研究进展 [J]. 中国材料进展, 2022, 41: 345
|
38 |
Fernandes H R, Tulyaganov D U, Pascual M J, et al. The role of K2O on sintering and crystallization of glass powder compacts in the Li2O-K2O-Al2O3-SiO2 system [J]. J. Eur. Ceram. Soc., 2012, 32: 2283
|
39 |
Zhao L L, Li G Y, Zhang L Q, et al. Influence of Y addition on the long time oxidation behaviors of high Nb containing TiAl alloys at 900 oC [J]. Intermetallics, 2010, 18: 1586
|
40 |
Epifano E, Monceau D. Ellingham diagram: a new look at an old tool [J]. Corros. Sci., 2023, 217: 111113
|
41 |
Yan H J, Meng X Z, Zhang Q H, et al. High temperature oxidation performance of the electrodeposited SiO2 coating incorporated with Ni nanoparticle [J]. Corros. Sci., 2022, 205: 110455
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|