Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (1): 155-163    DOI: 10.11902/1005.4537.2024.186
Current Issue | Archive | Adv Search |
Corrosion Behavior of Enamel Coatings in Molten Salts MgCl2-KCl-NaCl at 600 oC
YANG Xiaodong1, LI Xue2, YU Zheng2(), YANG Shasha2, CHEN Minghui2, WANG Fuhui2
1 State Administration of Science, Technology and Industry for National Defence, Beijing 100039, China
2 Corrosion and Protection Center, Northeastern University, Shenyang 110819, China
Cite this article: 

YANG Xiaodong, LI Xue, YU Zheng, YANG Shasha, CHEN Minghui, WANG Fuhui. Corrosion Behavior of Enamel Coatings in Molten Salts MgCl2-KCl-NaCl at 600 oC. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 155-163.

Download:  HTML  PDF(8524KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Three enamel coatings with identical total quantities of flux Na2O, K2O, and B2O3, but varying B2O3 mass fractions (11.78%, 14.78% and 17.78%) were prepared on on T92 ferritic steel. Their corrosion behaviorwas studied in molten salts MgCl2-NaCl-KCl at 600 oC in air. Results show that the corrosion severity of the enamel coatings gradually decreases with the increasing amount of B2O3 in enamels. After corrosion for 500 h, the enamel coating with the lowest mass fraction of B2O3 (11.78%) suffered from a thickness loss of about 82 μm and a mass loss of about 14.44 mg/cm2 under the combined action of physical dissolution and chemical attack of corrosive salts. Meanwhile, under the action of continuously generated gaseous corrosion products inside the coating, the coating was swelled, as a result, its thickness is expanded from 82.7 ± 0.5 μm of the original to 253.9 ± 44.9 μm. By increasing B2O3 content to 14.78%, the thickness- and mass-loss of the enamel coating were significantly reduced to about 12 μm and 3.69 mg/cm2 respectively, while the volume expansion caused by rapid corrosion is eliminated. Comparatively, the enamel coating with the highest mass fraction of B2O3 (17.78%) showed excellent corrosion resistance with a thickness loss of less than 1 μm, and mass loss is eventually reduced to only 0.16 mg/cm2.

Key words:  enamel coating      T92 steel      corrosion      melt chloride salts     
Received:  17 June 2024      32134.14.1005.4537.2024.186
ZTFLH:  TG17  
Fund: Liaoning Revitalization Talents Program(XLYC2203133);Fundamental Research Funds for Central Universities(N2302018);Ningbo Yuyao City Science and Technology Plan Project
Corresponding Authors:  YU Zheng, E-mail: yuzheng_199501@163.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.186     OR     https://www.jcscp.org/EN/Y2025/V45/I1/155

EnamelSiO2SrOCaOAl2O3B2O3CoONa2OK2O
B12578.414.20511.7818.414.20
B15578.414.20514.7816.383.23
B18578.414.20517.7813.802.81
Table 1  Nominal compositions of three enamel coatings
Fig.1  DSC curves of the enamel powders with different compositions (a) and XRD patterns of three as-prepared enamel coatings (b) (Tg—glass transition temperature)
Fig.2  Cross-sectional and surface SEM images of as-prepared B12 (a), B15 (b) and B18 (c) enamel coatings
Fig.3  Macro images of B12 (a, d), B15 (b, e) and B18 (c, f) enamel coatings before (a-c) and after (d-f) hot corrosion in MgCl2-KCl-NaCl molten salt at 600 oC for 500 h
Fig.4  Mass losses of three enamel coatings after hot corrosion in molten MgCl2-KCl-NaCl at 600 oC for 500 h
Fig.5  XRD spectra of three enamel coatings after hot corrosion in molten MgCl2-KCl-NaCl at 600 oC for 500 h
Fig.6  Low- (a, d, g) and high- (b, c, e, f, h, i) magnification surface SEM images of B12 (a-c), B15 (d-f) and B18 (g-i) enamel coatings after hot corrosion in molten MgCl2-KCl-NaCl at 600 oC for 500 h
PositionOSiMgAlCaSrCoNaKCl
165.958.8520.461.180.430.9300.510.870.83
245.6730.719.412.262.583.010.352.622.251.15
357.2323.7710.742.671.062.140.210.651.140.39
463.4011.2622.280.860.250.770.010.350.300.50
553.7426.779.373.141.803.180.200.840.740.24
Table 2  EDS analyses of the regions marked with 1-5 in Fig.6
Fig.7  Cross-sectional SEM images of B12 (a), B15 (b) and B18 (c) enamel coatings after hot corrosion in molten MgCl2-KCl-NaCl at 600 oC for 500 h
Fig.8  Profiles of the EDS point analysis results for B15 (a) and B18 (b) enamel coatings after hot corrosion in molten MgCl2-KCl-NaCl at 600 oC for 500 h
Fig.9  3D surface images of B12 (a), B15 (b) and B18 (c) enamel coatings after hot corrosion in molten MgCl2-KCl-NaCl at 600 oC for 500 h
Fig.10  Thermodynamic data of various relevant reactions for as-prepared enamel coatings
Fig.11  Schematic diagrams of hot corrosion of B12 and B18 enamels
1 Bonk A, Sau S, Uranga N, et al. Advanced heat transfer fluids for direct molten salt line-focusing CSP plants [J]. Prog. Energy Combust. Sci., 2018, 67: 69
2 Vignarooban K, Xu X H, Arvay A, et al. Heat transfer fluids for concentrating solar power systems-a review [J]. Appl. Energy, 2015, 146: 383
3 Wu J J, Wang Y L. Hot corrosion and protection of structural materials in molten salt reactor [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 193
吴家杰, 王艳丽. 熔盐堆用结构材料的热腐蚀及防护 [J]. 中国腐蚀与防护学报, 2022, 42: 193
doi: 10.11902/1005.4537.2021.070
4 Bauer T, Pfleger N, Laing D, et al. High-temperature molten salts for solar power application [A]. LantelmeF, GroultH. Molten Salts Chemistry: From Lab to Applications [M]. Amsterdam: Elsevier, 2013: 415
5 Peiró G, Gasia J, Miró L, et al. Influence of the heat transfer fluid in a CSP plant molten salts charging process [J]. Renew. Energy, 2017, 113: 148
6 Villada C, Ding W J, Bonk A, et al. Engineering molten MgCl2-KCl-NaCl salt for high-temperature thermal energy storage: review on salt properties and corrosion control strategies [J]. Sol. Energy Mater. Sol. Cells, 2021, 232: 111344
7 Ding W J, Shi H, Jianu A, et al. Molten chloride salts for next generation concentrated solar power plants: mitigation strategies against corrosion of structural materials [J]. Sol. Energy Mater. Sol. Cells, 2019, 193: 298
8 Mohan G, Venkataraman M B, Coventry J. Sensible energy storage options for concentrating solar power plants operating above 600oC [J]. Renew. Sustain. Energy Rev., 2019, 107: 319
9 Mohan G, Venkataraman M, Gomez-Vidal J, et al. Thermo-economic analysis of high-temperature sensible thermal storage with different ternary eutectic alkali and alkaline earth metal chlorides [J]. Sol. Energy, 2018, 176: 350
10 Mohan G, Venkataraman M, Gomez-Vidal J, et al. Assessment of a novel ternary eutectic chloride salt for next generation high-temperature sensible heat storage [J]. Energy Convers. Manage., 2018, 167: 156
11 Pandey C, Giri A, Mahapatra M M. Evolution of phases in P91 steel in various heat treatment conditions and their effect on microstructure stability and mechanical properties [J]. Mater. Sci. Eng., 2016, 664A: 58
12 Zhang X H, Zeng Y P, Cai W H, et al. Study on the softening mechanism of P91 steel [J]. Mater. Sci. Eng., 2018, 728A: 63
13 Zhang M Y, Ge J B, Yin, T Q, et al. Erratum—redox potential measurements of Cr(II)/Cr Ni(II)/Ni and Mg(II)/Mg in molten MgCl2-KCl-NaCl mixture [J. Electrochemi Soc., 167, 116505 (2020)] [J]. J. Electrochem. Soc., 2021, 168: 079001
14 Feng X K, Melendres C A. Anodic corrosion and passivation behavior of some metals in molten LiCl-KCl containing oxide ions [J]. J. Electrochem. Soc., 1982, 129: 1245
15 Zaikov Y P, Batukhtin V P, Shurov N I, et al. Calcium production by the electrolysis of molten CaCl2-part I. Interaction of calcium and copper-calcium alloy with electrolyte [J]. Metall. Mater. Trans., 2014, 45B: 961
16 Fernández A G, Cabeza L F. Corrosion evaluation of eutectic chloride molten salt for new generation of CSP plants. Part 1: thermal treatment assessment [J]. J. Energy Storage, 2020, 27: 101125
17 Grégoire B, Oskay C, Meißner T M, et al. Corrosion mechanisms of ferritic-martensitic P91 steel and Inconel 600 nickel-based alloy in molten chlorides. Part II: NaCl-KCl-MgCl2 ternary system [J]. Sol. Energy Mater. Sol. Cells, 2020, 216: 110675
18 Ding W J, Shi H, Xiu Y L, et al. Hot corrosion behavior of commercial alloys in thermal energy storage material of molten MgCl2/KCl/NaCl under inert atmosphere [J]. Sol. Energy Mater. Sol. Cells, 2018, 184: 22
19 Yuan L, Xie X, Chen M H, et al. Air oxidation and NaCl corrosion behavior of 20 steel without and with enamel coating at 400 oC [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 890
袁 磊, 谢 新, 陈明辉 等. 20钢及其搪瓷涂层在400 ℃下的氧化和NaCl腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 890
20 Chen M H, Li W B, Shen M L, et al. Glass-ceramic coatings on titanium alloys for high temperature oxidation protection: oxidation kinetics and microstructure [J]. Corros. Sci., 2013, 74: 178
21 Chen M H, Li W B, Shen M L, et al. Glass coatings on stainless steels for high-temperature oxidation protection: mechanisms [J]. Corros. Sci., 2014, 82: 316
22 Ullah F, Ameen M, Hasrat K. Experimental study on optimization of heat storage and melting salts of solar energy [J]. J. Food Process. Preserv., 2018, 43: e13685
23 Zuo Y, Cao M P, Shen M, et al. Effect of Mg on corrosion of 316H stainless steel in molten salts MgCl2-NaCl-KCl [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 80
左 勇, 曹明鹏, 申 淼 等. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 80
24 Liu S J, Wang R D, Wang L, et al. Corrosion behavior of iron-based and Ni-based alloys melted in NaCl-MgCl2-KCl mixed molten salt under vacuum atmosphere [J]. J. Mater. Res. Technol., 2024, 28: 1915
25 Wang B, Cunning B V, Park S Y, et al. Graphene coatings as barrier layers to prevent the water-induced corrosion of silicate glass [J]. ACS Nano, 2016, 10: 9794
pmid: 27704789
26 Wang H, Zhang C, Jiang C Y, et al. Evaluation of glass coatings with various silica content corrosion in a 0.5 M HCl water solution [J]. Crystals, 2021, 11: 346
27 Zhan J, Chen G M, Zhang Q. Study on the corrosion mechanism of HVOF silicate glass coating in 36%HCl and 10 mol/L NaOH solution [J]. Optoelectron. Adv. Mater. Rapid Commun., 2010, 4: 1170
28 Zhang H, Zhang J J, Wang Z Q. Corrosion resistance of plasma-sprayed ceramic coatings doped with glass in different proportions [J]. J. Therm. Spray Technol., 2023, 32: 1286
29 Shao G X, Gou W B, Wen R C, et al. Enamel [M]. Beijing: China Light Industry Press, 1983: 360
邵规贤, 芶文彬, 闻瑞昌 等. 搪瓷学 [M]. 北京: 轻工业出版社, 1983: 360
30 Huang Q Z, Lu G M, Wang J, et al. Thermal decomposition mechanisms of MgCl2·6H2O and MgCl2·H2O [J]. J. Anal. Appl. Pyrolysis, 2011, 91: 159
31 Chen K, Chen M H, Yu Z D, et al. Simulating sulfuric acid dew point corrosion of enamels with different contents of silica [J]. Corros. Sci., 2017, 127: 201
32 Bunker B C. Molecular mechanisms for corrosion of silica and silicate glasses [J]. J. Non-Cryst. Solids, 1994, 179: 300
33 Gin S, Ribet I, Couillard M. Role and properties of the gel formed during nuclear glass alteration: importance of gel formation conditions [J]. J. Nucl. Mater., 2001, 298: 1
[1] REN Mingze, DONG Lin, YANG Guanjun. Research Progress on Material and Structure Optimization of Environmental Barrier Coatings[J]. 中国腐蚀与防护学报, 2025, 45(1): 33-45.
[2] HUANG Qinying, LI Yuzhuo, YANG Yingfei, REN Pan, WANG Qiwei. Hot Corrosion Behavior of Pt Modified AlCoCrFeNi2.1 Eutectic High Entropy Alloy[J]. 中国腐蚀与防护学报, 2025, 45(1): 115-126.
[3] ZHAO Lijia, CUI Xinyu, WANG Jiqiang, XIONG Tianying. Corrosion Behavior of Cold-sprayed B4C/Al Composite Coating in Boric Acid Solution[J]. 中国腐蚀与防护学报, 2025, 45(1): 164-172.
[4] LI Hanye, ZHANG Zhichao, WANG Qunchang, GU Yan, CHEN Zehao, YANG Shasha, MEI Feiqiang. Formation Mechanism of Residue Water Stains on TC4 Ti-alloy Surface and Conter-measures[J]. 中国腐蚀与防护学报, 2025, 45(1): 244-248.
[5] WANG Kun, ZOU Lanxin, GUO Lei, YAN Kai, YE Fuxing, LIU Hongli, GUO Hongbo. High-temperature Corrosion and Protection of Thermal Barrier Coatings for Aeroengines and Gas Turbines[J]. 中国腐蚀与防护学报, 2025, 45(1): 1-19.
[6] WANG Yue, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, XIA Siyao. Corrosion Resistance of CVD Aluminized Coating on K444 Alloy Beneath a Thin Deposits of 95%Na2SO4 + 5%NaCl at High Temperature[J]. 中国腐蚀与防护学报, 2025, 45(1): 127-136.
[7] ZHANG Yongkang, ZHAI Haimin, LI Xuqiang, LI Wensheng. Hot Corrosion Behavior of Fe-based Amorphous Coatings in Mixed Salts of Na2SO4 + K2SO4 and Na2SO4 + NaCl[J]. 中国腐蚀与防护学报, 2025, 45(1): 92-102.
[8] MA Hongyu, LIU Rui, CUI Yu, KE Peiling, LIU Li, WANG Fuhui. Effect of Hydrostatic Pressure on Corrosion Behavior of Cr/GLC Laminated Coating[J]. 中国腐蚀与防护学报, 2025, 45(1): 103-114.
[9] LIANG Yuwei, WANG Jie, SONG Peng, HUANG Taihong, BAO Yuxu. Wear and Corrosion Resistance of FeCrMoSiB Amorphous Coating[J]. 中国腐蚀与防护学报, 2025, 45(1): 191-200.
[10] LI Kaiyang, WU You, ZHANG Guanlin, ZHANG Naiqiang. Research Progress of Environmental Cracking of Structural Metallic Materials for High Temperature Supercritical CO2 System[J]. 中国腐蚀与防护学报, 2025, 45(1): 61-68.
[11] CAO Jingyi, ZHAO Yi, LIU Yanshuo, FANG Zhigang, JING Yuan, LI Liang, MENG Fandi. Preparation and Protective Properties of Superhydrophobic Modified Basalt/epoxy Coatings[J]. 中国腐蚀与防护学报, 2024, 44(6): 1476-1484.
[12] YU Zheng, CHEN Minghui, WANG Jinlong, YANG Shasha, WANG Fuhui. Influence of Alkali Metal Sulfate- and Chloride-salts Content in Artificial Coal Ash on Corrosion Behavior of HR3C Steels With and Without Aluminizing[J]. 中国腐蚀与防护学报, 2024, 44(6): 1389-1398.
[13] PANG Jie, LIU Xiangju, LIU Nazhen, HOU Baorong. Galvanic Corrosion of T2 Cu-alloy and Q235 Steel in Simulated Beishan Groundwater Environment[J]. 中国腐蚀与防护学报, 2024, 44(6): 1435-1442.
[14] YU Wenjuan, WANG Tiancong, ZHAO Dongyang, XIANG Xueyun, WU Hang, WANG Wen. Lifetime Prediction Model for Barrier-type Corrosion-resistant Coating[J]. 中国腐蚀与防护学报, 2024, 44(6): 1617-1624.
[15] ZHAN Fuyuan, LIU Xuanyi, HAUNG Shifu, LIU Shuaiqi, XU Yuanyuan, PAN Xigui, HE Hualin, LIU Guangming. Corrosion Behavior of SA210C Steel Beneath Deposit Film of Mixed Salts Na2SO4-NaCl in Air at 600oC[J]. 中国腐蚀与防护学报, 2024, 44(6): 1656-1662.
No Suggested Reading articles found!