Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (6): 1284-1292    DOI: 10.11902/1005.4537.2022.407
Current Issue | Archive | Adv Search |
High Temperature Oxidation Behavior of Quaternary (Cr2/3Ti1/3)3AlC2 MAX Ceramic in Air and Steam
REN Yan1(), ZHANG Xintao2,3, GAI Xin1, XU Jingjun2, ZHANG Wei1, CHEN Yong1, LI Meishuan2
1.Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610213, China
2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

REN Yan, ZHANG Xintao, GAI Xin, XU Jingjun, ZHANG Wei, CHEN Yong, LI Meishuan. High Temperature Oxidation Behavior of Quaternary (Cr2/3Ti1/3)3AlC2 MAX Ceramic in Air and Steam. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1284-1292.

Download:  HTML  PDF(18418KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The oxidation behavior of quaternary (Cr2/3Ti1/3)3AlC2 MAX ceramic at high temperatures in air and steam was investigated by isothermal oxidation test. The good oxidation resistance of (Cr2/3Ti1/3)3AlC2 at 800-1200 ℃ in air and at 1000-1200 ℃ in steam may be ascribed to the oxide scale with Al2O3, TiO2 and Cr2O3 formed on the surface of (Cr2/3Ti1/3)3AlC2 during oxidation. An oxide scale with external Ti-rich layer, intermediate Cr-rich layer and internal Al-rich layer was formed on the surface of (Cr2/3Ti1/3)3AlC2 during oxidation at 1200 ℃ in air/steam. The structure of the oxide scale was affected by the selective oxidation and diffusion of elements in (Cr2/3Ti1/3)3AlC2. The results indicate that (Cr2/3Ti1/3)3AlC2 exhibit good oxidation resistance in high temperature air/steam.

Key words:  MAX phase      high temperature oxidation      nuclear reactor     
Received:  23 December 2022      32134.14.1005.4537.2022.407
ZTFLH:  TB321  
Fund: Key Laboratory of Science and Technology for National Defense Fund(6142A06030107)
Corresponding Authors:  REN Yan, E-mail: yren2021@qq.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.407     OR     https://www.jcscp.org/EN/Y2023/V43/I6/1284

Fig.1  Surface macrograph (a), XRD pattern (b) and surface micrograph (c) of as-prepared (Cr2/3Ti1/3)3AlC2
Fig.2  Surface macrographs of (Cr2/3Ti1/3)3AlC2 after oxidation at 800, 1000 and 1200 ℃ in air
Fig.3  XRD patterns of the surfaces of (Cr2/3Ti1/3)3AlC2 after oxidation at 800, 1000 and 1200 ℃ in air
Fig.4  Surface morphologies of (Cr2/3Ti1/3)3AlC2 after oxidation at 800 ℃ (a, b), 1000 ℃ (c, d) and 1200 ℃ (e, f) in air
Fig.5  Cross-sectional morphology (a) and corresponding element profiles (b) of (Cr2/3Ti1/3)3AlC2 after oxidation at 800 ℃ in air
Fig.6  Cross-sectional morphologies (a, b) and corresponding element profiles (c) of (Cr2/3Ti1/3)3AlC2 after oxidation at 1000 ℃ in air
Fig.7  Cross-sectional morphologies (a, b) and corresponding element profiles (c) of (Cr2/3Ti1/3)3AlC2 after oxidation at 1200 ℃ in air
Fig.8  Oxidation kinetics of (Cr2/3Ti1/3)3AlC2 at 1000 and 1200 ℃ in water vapor
Fig.9  Surface macrographs of (Cr2/3Ti1/3)3AlC2 after oxidation at 1000 and 1200 ℃ in water vapor
Fig.10  XRD patterns of the surfaces of (Cr2/3Ti1/3)3AlC2 after oxidation at 1000 and 1200 ℃ in water vapor
Fig.11  Surface morphologies of (Cr2/3Ti1/3)3AlC2 after oxidation at 1000 ℃ (a, b) and 1200 ℃ (c, d) in water vapor
SampleCr KTi KAl KO K
1#26.1222.718.7242.45
2#23.6825.525.4945.32
3#11.2143.045.3140.44
Table 1  EDS results of the surfaces of (Cr2/3Ti1/3)3AlC2 samples after oxidation in water vapor
Fig.12  Cross-sectional morphologies (a, b) and corresponding element profiles (c) of (Cr2/3Ti1/3)3AlC2 after oxidation at 1000 ℃ in water vapor
Fig.13  Cross-sectional morphologies (a, b) and corresponding element profiles (c) of (Cr2/3Ti1/3)3AlC2 after oxidation at 1200 ℃ in water vapor
1 Barsoum M W. The M N+1AX N phases: A new class of solids: Thermodynamically stable nanolaminates [J]. Prog. Solid State Chem., 2000, 28: 201
doi: 10.1016/S0079-6786(00)00006-6
2 Tian L, Fu C, Li Y M, et al. MAX phase: Synthesis, structure and property [J]. Prog. Phys., 2021, 41: 39
田 莉, 付 超, 李月明 等. MAX相陶瓷的结构、制备及物理性能研究 [J]. 物理学进展, 2021, 41: 39
3 Tallman D J, He L F, Gan J, et al. Effects of neutron irradiation of Ti3SiC2 and Ti3AlC2 in the 121-1085 °C temperature range [J]. J. Nucl. Mater., 2017, 484: 120
doi: 10.1016/j.jnucmat.2016.11.016
4 Bugnet M, Cabioc'h T, Mauchamp V, et al. Stability of the nitrogen-deficient Ti2AlN x MAX phase in Ar2+-irradiated (Ti, Al)N/Ti2AlN x multilayers [J]. J. Mater. Sci., 2010, 45: 5547
doi: 10.1007/s10853-010-4615-0
5 Qiu B W, Wang J, Deng Y B, et al. A review on thermohydraulic and mechanical-physical properties of SiC, FeCrAl and Ti3SiC2 for ATF cladding [J]. Nucl. Eng. Technol., 2020, 52: 1
doi: 10.1016/j.net.2019.07.030
6 Cheng X Y, Liu R Z, Liu M L, et al. Applications of carbide ceramics in nuclear reactors [J]. Chin. Sci. Bull., 2021, 66: 3154
doi: 10.1360/TB-2020-1316
7 Heinzel A, Weisenburger A, Müller G. Long-term corrosion tests of Ti3SiC2 and Ti2AlC in oxygen containing LBE at temperatures up to 700 °C [J]. J. Nucl. Mater., 2016, 482: 114
doi: 10.1016/j.jnucmat.2016.10.007
8 Gong X, Short M P, Auger T, et al. Environmental degradation of structural materials in liquid lead- and lead-bismuth eutectic-cooled reactors [J]. Prog. Mater. Sci., 2022, 126: 100920
9 Xu G F, Li Y, Lei Y C, et al. Effect of relative flow velocity on corrosion behavior of high nitrogen austenitic stainless steel in liquid lead-bismuth eutectic alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 6: 899
徐桂芳, 李 园, 雷玉成 等. 相对流速对高氮奥氏体不锈钢在液态铅铋共晶合金中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 6: 899
10 Shen Z, Zhang L F, Zhu F W, et al. Corrosion behavior of candidate SCWR fuel cladding materials [J]. J. Chin. Soc. Corros. Prot., 2014, 4: 301
沈 朝, 张乐福, 朱发文 等. 超临界水冷堆燃料包壳候选材料的耐腐蚀性能 [J]. 中国腐蚀与防护学报, 2014, 4: 301
11 Zheng L Y, Wang J Y, Chen J X, et al. Strengthening of Ti3(Si,Al)C2 by Doping with Tungsten [J]. J. Am. Ceram. Soc., 2012, 95: 3726
doi: 10.1111/jace.2012.95.issue-12
12 Zhang H B, Zhou Y C, Bao Y W, et al. Improving the oxidation resistance of Ti3SiC2 by forming a Ti3Si0.9Al0.1C2 solid solution [J]. Acta Mater., 2004, 52: 3631
doi: 10.1016/j.actamat.2004.04.015
13 Liu Z M, Wu E D, Wang J M, et al. Crystal structure and formation mechanism of (Cr2/3Ti1/3)3AlC2 MAX phase [J]. Acta Mater., 2014, 73: 186
doi: 10.1016/j.actamat.2014.04.006
14 Liu Z M, Zheng L Y, Sun L C, et al. (Cr2/3Ti1/3)3AlC2 and (Cr5/8Ti3/8)4-AlC3: New MAX-phase compounds in Ti-Cr-Al-C system [J]. J. Am. Ceram. Soc., 2014, 97: 67
doi: 10.1111/jace.2014.97.issue-1
15 Liu Z M. Investigations on synthesis, crystal structure and related properties of a new quaternary MAX phase-(Cr2/3Ti 1/3)3AlC2 [D]. Shenyang: University of Chinese Academy of Sciences, 2015
刘智谋. 新型四元MAX相(Cr2/3Ti 1/3)3AlC2的合成、晶体结构表征及性能研究 [D]. 沈阳: 中国科学院大学, 2015
16 Hu C F, Lin Z J, He L F, et al. Physical and mechanical properties of bulk Ta4AlC3 ceramic prepared by an in situ reaction synthesis/hot-pressing method [J]. J. Am. Ceram. Soc., 2007, 90: 2542
doi: 10.1111/jace.2007.90.issue-8
17 Wan D T, He L F, Zheng L L, et al. A new method to improve the high-temperature mechanical properties of Ti3SiC2 by substituting Ti with Zr, Hf, or Nb [J]. J. Am. Ceram. Soc., 2010, 93: 1749
doi: 10.1111/jace.2010.93.issue-6
18 Li M S. High Temperature Corrosion of Metals [M]. Beijing: Metallurgical Industry Press, 2001
李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001
19 Shi H, Tang C C, Jianu A, et al. Oxidation behavior and microstructure evolution of alumina-forming austenitic & high entropy alloys in steam environment at 1200  °C [J]. Corros. Sci., 2020, 170: 108654
doi: 10.1016/j.corsci.2020.108654
20 Liu Z M, Yang J, Qian Y H, et al. High temperature oxidation behavior of quaternary ordered (Cr2/3Ti1/3)3AlC2-based MAX ceramic [J]. Corros. Sci., 2021, 183: 109317
doi: 10.1016/j.corsci.2021.109317
21 Lei Y M. Design, synthesis and properties of protective coatings for accident tolerant fuels [D]. Shenyang: University of Science and Technology of China, 2021
雷一明. 几种事故容错燃料包壳涂层的设计、制备与性能研究 [D]. 沈阳: 中国科学技术大学, 2021
22 Tang C C, Große M, Ulrich S, et al. High-temperature oxidation and hydrothermal corrosion of textured Cr2AlC-based coatings on zirconium alloy fuel cladding [J]. Surf. Coat. Technol., 2021, 419: 127263
23 Ougier M, Michau A, Lomello F, et al. High-temperature oxidation behavior of HiPIMS as-deposited Cr-Al-C and annealed Cr2AlC coatings on Zr-based alloy [J]. J. Nucl. Mater., 2020, 528: 151855
24 Kim D, Sah I, Lee H J, et al. Hydrogen effects on oxidation behaviors of Haynes 230 in high temperature steam environments [J]. Solid State Ion., 2013, 243: 1
doi: 10.1016/j.ssi.2013.04.010
[1] LIU Huanhuan, LIU Guangming, LI Futian, MENG Lingqi, XIAHOU Junzhao, GU Jialei. Oxidation Behavior of TP439 Stainless Steel in Water Vapor at 800 ℃[J]. 中国腐蚀与防护学报, 2023, 43(2): 377-383.
[2] REN Yanjie, LV Yunlei, DAI Ting, GUO Xiaohui, CHEN Jian, ZHOU Libo, QIU Wei, NIU Yan. Oxidation Behavior of Ternary Alloys Co-20Ni-3Al and Co-20Ni-5Al in 105 Pa O2 Atmosphere at 800-1000 ℃[J]. 中国腐蚀与防护学报, 2022, 42(6): 995-1001.
[3] XIE Leipeng, CHEN Minghui, WANG Jinlong, WANG Fuhui. High Temperature Oxidation Behavior of Ultrafine Grained ODS Nickel-based Superalloy Prepared by Spark Plasma Sintering[J]. 中国腐蚀与防护学报, 2022, 42(5): 709-716.
[4] PEI Shubo, WAN Dongyang, ZHOU Ping, CAO Guoqin, HU Junhua. Research Progress on Preparation, Microstructure, Oxidation- and Corrosion-resistance of High-entropy Alloy Coatings[J]. 中国腐蚀与防护学报, 2022, 42(5): 873-878.
[5] ZHANG Qin, LIANG Taosha, WANG Wen, ZHAO Langlang, JIANG Yuefeng. Oxidation Kinetics and Microstructure Evolution of Nanocrystalline Ni-12Cr Alloy at 800 ℃[J]. 中国腐蚀与防护学报, 2022, 42(5): 733-742.
[6] QIU Panpan, SHU Xiaoyong, HU Linli, YANG Tao, FANG Yuqing. Research Progress of Pt-modified Aluminide Coating on Nickel-base Superalloys[J]. 中国腐蚀与防护学报, 2022, 42(2): 186-192.
[7] LI Ling, DU Xiran, QU Pinquan, LI Jiancheng, WANG Jinlong, GU Yan, ZHANG Jia, CHEN Minghui, WANG Fuhui. Effect of Vacuum Heat Treatment on Oxidation Behavior of Arc Ion Plated NiCoCrAlY Coatings[J]. 中国腐蚀与防护学报, 2022, 42(2): 243-248.
[8] YANG Sheng, ZHANG Huijie, XIANG Wuyuan, OUYANG Tao, XIAO Fen, ZHOU Hui. Effect of Post Surface Treatment of Micro-arc Oxidation Films/TC4 Ti-alloy on Their Morphology and Galvanic Corrosion Performance[J]. 中国腐蚀与防护学报, 2021, 41(6): 905-908.
[9] XIE Dongbai, HONG Hao, WANG Wen, PENG Xiao, DUO Shuwang. Oxidation Behavior of Stainless Steel 1Cr11Ni2W2MoV in a Simulated Kerosene Combustion Environment[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[10] XU Xunhu,HE Cuiqun,XIANG Junhuai,WANG Ling,ZHANG Honghua,ZHENG Xiaodong. High Temperature Oxidation Behavior of Co-20Re-25Cr-1Si Alloy in 0.1 MPa Pure Oxygen[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[11] AI Peng,LIU Lixiang,LI Xiaogang,JIANG Wentao. Influence of TiAlSiN Coatings on High Temperature Oxidation Resistance of γ-TiAl Based Alloys[J]. 中国腐蚀与防护学报, 2019, 39(4): 306-312.
[12] Junjie XIA,Hongzhi NIU,Min LIU,Huazhen CAO,Guoqu ZHENG,Liankui WU. Enhancement of High Temperature Oxidation Resistance of Ti48Al5Nb Alloy via Anodic Anodization in NH4F Containing Ethylene Glycol[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[13] Dongbai XIE,Youyu ZHOU,Jintao LU,Wen WANG,Shenglong ZHU,Fuhui WANG. Effect of Al/Si Content on Corrosion of Ni-based Alloys in Supercritical Water[J]. 中国腐蚀与防护学报, 2019, 39(1): 68-76.
[14] Ling WANG,Junhuai XIANG,Honghua ZHANG,Songlin QIN. High Temperature Oxidation Behavior of Three Co-20Re-xCr Alloys in 3.04×10-5 Pa Oxygen at 1000 and 1100 ℃[J]. 中国腐蚀与防护学报, 2019, 39(1): 83-88.
[15] Dongbai XIE, Youyu ZHOU, Jintao LU, Wen WANG, Shenglong ZHU, Fuhui WANG. Effect of Cr Content on Oxidation of Ni-based Alloy in Supercritical Water[J]. 中国腐蚀与防护学报, 2018, 38(4): 358-364.
No Suggested Reading articles found!