Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (2): 365-370    DOI: 10.11902/1005.4537.2022.094
Current Issue | Archive | Adv Search |
Carbonization Corrosion Behavior of Incoloy800H Alloy Used for Heat Transfer Tube in a Simulated Graphite Dust Environment
HUANG Jinyang1, LU Jintao1(), XING Ruihua2, ZHANG Xingxing1, HUANG Chunlin3, XU Yaxin2
1.National Engineering Research Center of Integration and Maintenance of Clean and Low-carbon Thermal Power Generation System, Xi'an Thermal Power Research Institute Co. Ltd., Xi'an 710032, China
2.School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
3.College of Material Science and Engineering, Xi'an University of Science and Technology, Xi′an 710054, China
Download:  HTML  PDF(5114KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The carbonization corrosion behavior of Incoloy800H alloy was studied in a saturated graphite dust environment at 650 ℃ by means of transmission electron microscope, scanning electron microscope and X-ray diffractometer. The results show that the carbonization corrosion depth versus time curve of Incoloy 800H alloy followed parabolic law, and the rate constant of carbonization corrosion is 0.013 μm/s1/2. The thickness of corrosion product layer increased with the prolonging of corrosion time. After corrosion for 3000 h, the corrosion products on Incoloy800H alloy surface composed mainly of MnCr2O4 spinel and (CrAlMn) x C y carbide, while the granular products in the internal carbonization zone was confirmed as MnCr2O4, M23C6 and Al2O3, distributing along the grainboundaries.The key factors, which aggravate the corrosion process of Incoloy800H alloy, was the carbonization-oxidation of grain boundaries.

Key words:  steam generator      Incoloy800H      carbonization      grain boundary corrosion      graphite dust     
Received:  06 April 2022      32134.14.1005.4537.2022.094
ZTFLH:  TG172  
Fund: Natural Science Basic Research Program of Shaanxi(2020JM-716);Science and Technology Project of China Huaneng Group(HNKJ20-H43)
About author:  LU Jintao, E-mail: lujintao@tpri.com.cn

Cite this article: 

HUANG Jinyang, LU Jintao, XING Ruihua, ZHANG Xingxing, HUANG Chunlin, XU Yaxin. Carbonization Corrosion Behavior of Incoloy800H Alloy Used for Heat Transfer Tube in a Simulated Graphite Dust Environment. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 365-370.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.094     OR     https://www.jcscp.org/EN/Y2023/V43/I2/365

Fig.1  Microstructure (a) and XRD pattern (b) of Incoloy800H alloy
Fig.2  Variations of carbonization depth with time (a) and square root of time (b) for Incoloy800H alloy in saturated graphite dust environment at 650 ℃
Fig.3  Surface (a-c) and cross-sectional (d-f) morphologies of Incoloy800H alloy after carbonization in saturated graphite dust environment at 650 ℃ for 200 h (a, d), 1000 h (b, e) and 3000 h (c, f)
Fig.4  XRD patterns of Incoloy800H alloy after carbonization in saturated graphite dust environment at 650 ℃ for different time
Fig.5  Cross-sectional morphology (a), carbon atom distribution (b) and diffraction pattern (c) of carbonization layer formed on Incoloy800H alloy after carbonization in saturated graphite dust environment at 650 ℃ for 3000 h
Fig.6  Carbonization corrosion mechanism of Incoloy800H alloy at 200 h (a), 1000 h (b) and 3000 (c) carboni-zation simulation, CPL: corrosion products layer, CL: carbonized layer
[1] Zhang Z Y, Dong Y J, Li F, et al. The Shandong Shidao Bay 200 MWe high-temperature gas-cooled reactor pebble-bed module (HTR-PM) demonstration power plant: an engineering and technological innovation [J]. Engineering, 2016, 2: 112
doi: 10.1016/J.ENG.2016.01.020
[2] Pan F, Yan Y F, Xu B S, et al. Research on heat treatment of T22 steel high-pressure boiler pipe [J]. Steel Pipe, 2010, 39(1): 60
(潘峰, 颜云峰, 徐宝顺 等. 高压锅炉管用T22钢的热处理研究 [J]. 钢管, 2010, 39(1): 60)
[3] Li J, Zhan Y J, Li J, et al. Mechanical properties and microstructure evolution of domestic Incoloy 800H during aging in helium [J]. Therm. Power Gener., 2020, 49(11): 120
(李江, 詹英杰, 李季 等. 国产Incoloy 800H合金在氦气中时效后力学性能及微观组织演化 [J]. 热力发电, 2020, 49(11): 120)
[4] Peng W, Chen T, Sun Q, et al. Preliminary experiment design of graphite dust emission measurement under accident conditions for HTGR [J]. Nucl. Eng. Des., 2017, 316: 218
doi: 10.1016/j.nucengdes.2017.03.014
[5] Guo L X, Liang D, Wang X J, et al. Graphite dust deposition in high temperature gas cooled reactor [J]. China Powder Sci. Technol., 2019, 25(2): 47
(郭丽潇, 梁栋, 王秀娟 等. 高温气冷堆蒸汽发生器中的石墨粉尘沉积 [J]. 中国粉体技术, 2019, 25(2): 47)
[6] Verfondern K, Xhonneux A, Nabielek H, et al. Computational analysis of modern HTGR fuel performance and fission product release during the HFR-EU1 irradiation experiment [J]. Nucl. Eng. Des., 2014, 273: 85
doi: 10.1016/j.nucengdes.2014.01.026
[7] Kadak A C. The status of the US high-temperature gas reactors [J]. Engineering, 2016, 2: 119
doi: 10.1016/J.ENG.2016.01.026
[8] Peng Y W, Chen C M, Li X Y, et al. Effect of low-temperature surface carburization on stress corrosion cracking of AISI 304 austenitic stainless steel [J]. Surf. Coat. Technol., 2017, 328: 420
doi: 10.1016/j.surfcoat.2017.08.058
[9] Snoeck J W, Froment G F, Fowles M. Filamentous carbon formation and gasification: thermodynamics, driving force, nucleation, and steady-state growth [J]. J. Catal., 1997, 169: 240
doi: 10.1006/jcat.1997.1634
[10] Yin R C. Carburization performance of Incoloy 800HT in CH4/H2 gas mixtures [J]. Mater. Sci. Eng., 2004, 380A: 281
[11] Grabke H J, Wolf I. Carburization and oxidation [J]. Mater. Sci. Eng., 1987, 87: 23
[12] Gui Y, Liang Z Y, Zhao Q X. Corrosion and carburization behavior of heat-resistant steels in a high-temperature supercritical carbon dioxide environment [J]. Oxid. Met., 2019, 92: 123
doi: 10.1007/s11085-019-09917-x
[13] Chang C H, Tsai W T. Carburization behavior under the pits induced by metal dusting in 304L and 347 stainless steels [J]. Mater. Chem. Phys., 2009, 116: 426
doi: 10.1016/j.matchemphys.2009.04.011
[14] Grabke H J, Krajak R, Paz J C N. On the mechanism of catastrophic carburization: 'metal dusting' [J]. Corros. Sci., 1993, 35: 1141
doi: 10.1016/0010-938X(93)90334-D
[15] Jakobi D, Gommans R. Typical failures in pyrolysis coils for ethylene cracking [J]. Mater. Corros., 2003, 54: 881
doi: 10.1002/maco.200303731
[16] McLeod A C, Bishop C M, Stevens K J, et al. Microstructure and carburization detection in HP alloy pyrolysis tubes [J]. Metallogr. Microstruct. Anal., 2015, 4: 273
doi: 10.1007/s13632-015-0210-8
[17] Li H, Chen W X. High temperature carburization behaviour of Mn-Cr-O spinel oxides with varied concentrations of manganese [J]. Corros. Sci., 2011, 53: 2097
doi: 10.1016/j.corsci.2011.02.021
[18] Wolf I, Grabke H J. A study on the solubility and distribution of carbon in oxides [J]. Solid State Commun., 1985, 54: 5
doi: 10.1016/0038-1098(85)91021-X
[19] Colwell J A, Rapp R A. Reactions of Fe-Cr and Ni-Cr alloys in CO/CO2 gases at 850 and 950 °C [J]. Metall. Trans., 1986, 17A: 1065
[20] Li C S, Yang Y S. Coking and carburizing behaviors of metal materials in high temperature carbon-containing atmosphere [J]. J. Chin. Soc. Corros. Prot., 2004, 24: 188
(李处森, 杨院生. 金属材料在高温碳气氛中的结焦与渗碳行为 [J]. 中国腐蚀与防护学报, 2004, 24: 188)
[21] Liu X, Wang H, Zhu Z L, et al. Oxidation characteristics of austenitic heat-resistant steel HR3C and Sanicro25 in supercritical water for power station [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 529
(刘晓, 王海, 朱忠亮 等. 电站用奥氏体耐热钢HR3C与Sanicro25在超临界水中的氧化特性 [J]. 中国腐蚀与防护学报, 2020, 40: 529)
[22] Lee H J, Kim H, Kim S H, et al. Corrosion and carburization behavior of chromia-forming heat resistant alloys in a high-temperature supercritical-carbon dioxide environment [J]. Corros. Sci., 2015, 99: 227
doi: 10.1016/j.corsci.2015.07.007
[23] Rouillard F, Moine G, Tabarant M, et al. Corrosion of 9Cr steel in CO2 at intermediate temperature II: mechanism of carburization [J]. Oxid. Met., 2012, 77: 57
doi: 10.1007/s11085-011-9272-4
[24] Li R T, Xiao B, Liu X, et al. Corrosion behavior of low alloy heat-resistant steel T23 in high-temperature supercritical carbon dioxide [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 327
(李瑞涛, 肖博, 刘晓 等. 低合金耐热钢T23在高温超临界CO2环境中的腐蚀特性研究 [J]. 中国腐蚀与防护学报, 2021, 41: 327)
[25] Jiao Y, Zhang S H, Tan Y. Research progress on stress corrosion cracking of stainless steel for nuclear power plant in high-temperature and high-pressure water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 417
(焦洋, 张胜寒, 檀玉. 核电站用不锈钢在高温高压水中应力腐蚀开裂行为的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 417)
[1] GUO Tao, HUANG Feng, HU Qian, LIU Jing. Oxidation Kinetics of 9Ni Steel Billet at High Temperature[J]. 中国腐蚀与防护学报, 2023, 43(4): 882-889.
[2] Xiaoqiang LIU,Xuelian XU,Jibo TAN,Yuan WANG,Xinqiang WU,Yuli ZHENG,Fanjiang MENG,En-Hou HAN. Effect of Reactor Coolant Environment on Fatigue Performance of Alloy 690 Steam Generator Tubes[J]. 中国腐蚀与防护学报, 2015, 35(3): 213-219.
[3] YU Yuanfang, WANG Hui, HU Shilin. SOME CORROSION PROBLEMS OF ALLOY 690TT IN SPECIAL ENVIRONMENTS[J]. 中国腐蚀与防护学报, 2010, 30(3): 251-256.
[4] . Corrosion of Steam Generators In TIANWAN Nuclear Power Plant[J]. 中国腐蚀与防护学报, 2006, 26(6): 376-379 .
No Suggested Reading articles found!