|
|
Corrosion Characteristics of 5A06 Al-alloy Exposed in Natural Deep-sea Environment |
DUAN Tigang, LI Zhen, PENG Wenshan, ZHANG Penghui, DING Kangkang, GUO Weimin, HOU Jian, MA Li, XU Likun( ) |
State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao 266237, China |
|
|
Abstract The deep-sea corrosion behavior of 5A06 Al-alloy was investigated through field exposure corrosion testing in the Western Pacific Ocean via a home-made cascade-type testing facility. After being exposed for 1 a in the marine environment at the depth of 500, 800, 1200 and 2000 m, respectively, the tested samples of 5A06 Al-alloy were examined by means of electrochemical test methods, scanning electron microscope with energy dispersive spectrometer and X-ray photoelectron spectroscope, in terms of electrochemical performance, corrosion morphology and corrosion characteristics etc. Results show that the average corrosion rate of 5A06 Al-alloy increases and then decreases with the increasing depth. The maximum average corrosion rate is 17 μm/a at the depth of 500 m, which is 3.1 times superior to that in the shallow. At the depth ranges from 800 m to 2000 m, the corrosion rate varies within 0.9-1.4 μm/a. Electrochemical test results show that the self-corrosion potential shifts positively with the increasing depth, while the charge transfer resistance increases.
|
Received: 11 April 2022
32134.14.1005.4537.2022.102
|
|
About author: XU Likun, E-mail: xulk@sunrui.net
|
Cite this article:
DUAN Tigang, LI Zhen, PENG Wenshan, ZHANG Penghui, DING Kangkang, GUO Weimin, HOU Jian, MA Li, XU Likun. Corrosion Characteristics of 5A06 Al-alloy Exposed in Natural Deep-sea Environment. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 352-358.
URL:
https://www.jcscp.org/EN/10.11902/1005.4537.2022.102 OR https://www.jcscp.org/EN/Y2023/V43/I2/352
|
[1] |
Huang Y Z, Dong L H, Liu B Y. Current status and development trend of study on corrosion of aluminum alloy in deep sea [J]. J. Mater. Prot., 2014, 47(1): 44
|
|
(黄雨舟, 董丽华, 刘伯洋. 铝合金深海腐蚀的研究现状及发展趋势 [J]. 材料保护, 2014, 47(1): 44)
|
[2] |
Chen Z J, Zhou X J, Chen H. Corrosion behavior of riveted pair of 6A01 Al-alloy-/304 stainless steel-plate used for high-speed train [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 507
|
|
(陈志坚, 周学杰, 陈昊. 高速列车铆接件中6A01铝合金腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 507)
|
[3] |
Ding Q M, Qin Y X, Cui Y Y. Galvanic corrosion of aircraft components in atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 455
|
|
(丁清苗, 秦永祥, 崔艳雨. 大气环境中飞机构件的电偶腐蚀研究 [J]. 中国腐蚀与防护学报, 2020, 40: 455)
|
[4] |
Peng W C, Hou J, Guo W M. Research progress on the corrosion of aluminum alloy in deep ocean [J]. Dev. Appl. Mater., 2010, 25(1): 59
|
|
(彭文才, 侯健, 郭为民. 铝合金深海腐蚀研究进展 [J]. 材料开发与应用, 2010, 25(1): 59)
|
[5] |
Luciano G, Letardi P, Traverso P, et al. Corrosion behaviour of Al, Cu, and Fe alloys in deep sea environment [J]. La Metall. Ital., 2013, 105: 21
|
[6] |
Canepa E, Stifanese R, Merotto L, et al. Corrosion behaviour of aluminium alloys in deep-sea environment: a review and the KM3NeT test results [J]. Mar. Struct., 2018, 59: 271
doi: 10.1016/j.marstruc.2018.02.006
|
[7] |
Zhang X, Lin M Y, Yang G H, et al. Effect of Er on corrosion behavior of marine engineering 5052 Al-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 686
|
|
(张欣, 林木烟, 杨光恒 等. Er对海工5052铝合金腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 686)
|
[8] |
Venkatesan R. Studies on Corrosion of some structural materials in deep sea environment [D]. Bengaluru: India Department of Metallurgy India Institute of Science, 2000
|
[9] |
Boyd W K, Fink F W. Corrosion of Metals in Marine Environments [M]. Columbus: Metals and Ceramics Information Center, 1970
|
[10] |
Reinhart F M. Corrosion of materials in hydrospace-Part V-aluminum alloys [R]. Virginia: US Naval Civil Engineering Lab Port Hueneme, 1969
|
[11] |
Sun F L, Li X G, Lu L, et al. Corrosion behavior of 5052 and 6061 aluminum alloys in deep ocean environment of South China Sea [J]. Acta Metall. Sin., 2013, 49: 1219
doi: 10.3724/SP.J.1037.2013.00143
|
|
(孙飞龙, 李晓刚, 卢琳 等. 5052和6061铝合金在中国南海深海环境下的腐蚀行为研究 [J]. 金属学报, 2013, 49: 1219)
doi: 10.3724/SP.J.1037.2013.00143
|
[12] |
Duan T G, Xu L K, Ding K K, et al. Corrosion behaviour investigation of 460 low alloy steels exposed in the natural deep-sea environment [J]. Corros. Eng., Sci. Technol., 2019, 54: 485
doi: 10.1080/1478422X.2019.1619290
|
[13] |
Ding K K, Guo W M, Qiu R, et al. Corrosion behavior of Q235 steel exposed in deepwater of South China Sea [J]. J. Mater. Eng. Perform., 2018, 27: 4489
doi: 10.1007/s11665-018-3553-x
|
[14] |
Ding K K, Fan L, Guo W M, et al. Deep sea corrosion behavior of typical metal materials and research hotspot discussion [J]. Equip. Environ. Eng., 2019, 16(1): 107
|
|
(丁康康, 范林, 郭为民 等. 典型金属材料深海腐蚀行为规律与研究热点探讨 [J]. 装备环境工程, 2019, 16(1): 107)
|
[15] |
Zou E M, Wang Z S, Ma C P. Temperature-salinity analysis of the west Pacific Ocean [J]. J. Oceanogr. Huanghai Bohai Seas, 1983, 1(2): 29
|
|
(邹娥梅, 王宗山, 马成璞. 西太平洋温盐分析 [J]. 黄渤海海洋, 1983, 1(2): 29)
|
[16] |
Pajkossy T. Impedance of rough capacitive electrodes [J]. J. Electroanal. Chem., 1994, 364: 111
doi: 10.1016/0022-0728(93)02949-I
|
[17] |
Costa F R, Franco D V, Da Silva L M. Electrochemical impedance spectroscopy study of the oxygen evolution reaction on a gas-evolving anode composed of lead dioxide microfibers [J]. Electrochim. Acta, 2013, 90: 332
doi: 10.1016/j.electacta.2012.12.043
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|