Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (2): 352-358    DOI: 10.11902/1005.4537.2022.102
Current Issue | Archive | Adv Search |
Corrosion Characteristics of 5A06 Al-alloy Exposed in Natural Deep-sea Environment
DUAN Tigang, LI Zhen, PENG Wenshan, ZHANG Penghui, DING Kangkang, GUO Weimin, HOU Jian, MA Li, XU Likun()
State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao 266237, China
Download:  HTML  PDF(7618KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The deep-sea corrosion behavior of 5A06 Al-alloy was investigated through field exposure corrosion testing in the Western Pacific Ocean via a home-made cascade-type testing facility. After being exposed for 1 a in the marine environment at the depth of 500, 800, 1200 and 2000 m, respectively, the tested samples of 5A06 Al-alloy were examined by means of electrochemical test methods, scanning electron microscope with energy dispersive spectrometer and X-ray photoelectron spectroscope, in terms of electrochemical performance, corrosion morphology and corrosion characteristics etc. Results show that the average corrosion rate of 5A06 Al-alloy increases and then decreases with the increasing depth. The maximum average corrosion rate is 17 μm/a at the depth of 500 m, which is 3.1 times superior to that in the shallow. At the depth ranges from 800 m to 2000 m, the corrosion rate varies within 0.9-1.4 μm/a. Electrochemical test results show that the self-corrosion potential shifts positively with the increasing depth, while the charge transfer resistance increases.

Key words:  Western Pacific Ocean      deep-sea corrosion      5A06 Al-alloy      surface characteristics     
Received:  11 April 2022      32134.14.1005.4537.2022.102
ZTFLH:  TD123  
About author:  XU Likun, E-mail: xulk@sunrui.net

Cite this article: 

DUAN Tigang, LI Zhen, PENG Wenshan, ZHANG Penghui, DING Kangkang, GUO Weimin, HOU Jian, MA Li, XU Likun. Corrosion Characteristics of 5A06 Al-alloy Exposed in Natural Deep-sea Environment. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 352-358.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.102     OR     https://www.jcscp.org/EN/Y2023/V43/I2/352

Fig.1  Corrosion photographs of 5A06 Al-alloy exposed at the depth of 500 m (a), 800 m (b), 1200 m (c) and 2000 m (d) before rust removal and after rust removal (e-h) for 1 a
Fig.2  SEM images of aluminum alloy 5A06 Al-alloy exposed to the deep sea environment at the depth of 500 m (a), 800 m (b), 1200 m (c) and 2000 m (d) for 1 a
Fig.3  EDS results of 5A06 Al-alloy corrosion products at the depth of 500 m (a), 800 m (b), 1200 m (c) and 2000 m (d) for 1 a
Depth / mE0 / VI0 / A·cm-2Epit / VIp / A·cm-2
500-0.9074.71×10-8-0.4827.89×10-7
800-0.7629.93×10-8-0.4731.23×10-7
1200-0.7485.56×10-8-0.4783.45×10-7
2000-0.6402.36×10-8-0.4767.52×10-8
Table 1  Tafel analysis results of 5A06 Al-alloy after exposing at various sea depths for 1 a
Depth / mRs / Ω·cm2Rf / Ω·cm2Qf / S·sec n ·cm-2nfRct / Ω·cm2Qdl / S·sec n ·cm-2nct
50027.288.31×1043.33×10-50.735.82×1052.29×10-60.82
80022.641.30×1042.60×10-50.684.31×1071.90×10-50.92
120029.952.84×1042.34×10-50.716.02×1072.50×10-51.00
200029.291.51×1042.90×10-50.681.91×1083.50×10-50.98
Table 2  Fitting results for EIS spectra of 5A06 Al-alloy
Fig.4  XPS analysis of the surface film of the corrosion product film of 5A06 Al-alloy at different depths: (a) survey, (b) Al 2p, (c) Mg 1s
Fig.5  Comparison of average corrosion rates for 5A06 Al-alloy after 1 a exposure (a) and comparison of pitting average and maximum depths for different sea depths (b)
Fig.6  Tafel plots of 5A06 Al-alloy after exposing at different sea depths for 1 a
Fig.7  Nyquist plots and equivalent circuit (a) and Bode plots (b) of 5A06 Al-alloy after exposure at different deep-sea depths for 1 a
[1] Huang Y Z, Dong L H, Liu B Y. Current status and development trend of study on corrosion of aluminum alloy in deep sea [J]. J. Mater. Prot., 2014, 47(1): 44
(黄雨舟, 董丽华, 刘伯洋. 铝合金深海腐蚀的研究现状及发展趋势 [J]. 材料保护, 2014, 47(1): 44)
[2] Chen Z J, Zhou X J, Chen H. Corrosion behavior of riveted pair of 6A01 Al-alloy-/304 stainless steel-plate used for high-speed train [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 507
(陈志坚, 周学杰, 陈昊. 高速列车铆接件中6A01铝合金腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 507)
[3] Ding Q M, Qin Y X, Cui Y Y. Galvanic corrosion of aircraft components in atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 455
(丁清苗, 秦永祥, 崔艳雨. 大气环境中飞机构件的电偶腐蚀研究 [J]. 中国腐蚀与防护学报, 2020, 40: 455)
[4] Peng W C, Hou J, Guo W M. Research progress on the corrosion of aluminum alloy in deep ocean [J]. Dev. Appl. Mater., 2010, 25(1): 59
(彭文才, 侯健, 郭为民. 铝合金深海腐蚀研究进展 [J]. 材料开发与应用, 2010, 25(1): 59)
[5] Luciano G, Letardi P, Traverso P, et al. Corrosion behaviour of Al, Cu, and Fe alloys in deep sea environment [J]. La Metall. Ital., 2013, 105: 21
[6] Canepa E, Stifanese R, Merotto L, et al. Corrosion behaviour of aluminium alloys in deep-sea environment: a review and the KM3NeT test results [J]. Mar. Struct., 2018, 59: 271
doi: 10.1016/j.marstruc.2018.02.006
[7] Zhang X, Lin M Y, Yang G H, et al. Effect of Er on corrosion behavior of marine engineering 5052 Al-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 686
(张欣, 林木烟, 杨光恒 等. Er对海工5052铝合金腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 686)
[8] Venkatesan R. Studies on Corrosion of some structural materials in deep sea environment [D]. Bengaluru: India Department of Metallurgy India Institute of Science, 2000
[9] Boyd W K, Fink F W. Corrosion of Metals in Marine Environments [M]. Columbus: Metals and Ceramics Information Center, 1970
[10] Reinhart F M. Corrosion of materials in hydrospace-Part V-aluminum alloys [R]. Virginia: US Naval Civil Engineering Lab Port Hueneme, 1969
[11] Sun F L, Li X G, Lu L, et al. Corrosion behavior of 5052 and 6061 aluminum alloys in deep ocean environment of South China Sea [J]. Acta Metall. Sin., 2013, 49: 1219
doi: 10.3724/SP.J.1037.2013.00143
(孙飞龙, 李晓刚, 卢琳 等. 5052和6061铝合金在中国南海深海环境下的腐蚀行为研究 [J]. 金属学报, 2013, 49: 1219)
doi: 10.3724/SP.J.1037.2013.00143
[12] Duan T G, Xu L K, Ding K K, et al. Corrosion behaviour investigation of 460 low alloy steels exposed in the natural deep-sea environment [J]. Corros. Eng., Sci. Technol., 2019, 54: 485
doi: 10.1080/1478422X.2019.1619290
[13] Ding K K, Guo W M, Qiu R, et al. Corrosion behavior of Q235 steel exposed in deepwater of South China Sea [J]. J. Mater. Eng. Perform., 2018, 27: 4489
doi: 10.1007/s11665-018-3553-x
[14] Ding K K, Fan L, Guo W M, et al. Deep sea corrosion behavior of typical metal materials and research hotspot discussion [J]. Equip. Environ. Eng., 2019, 16(1): 107
(丁康康, 范林, 郭为民 等. 典型金属材料深海腐蚀行为规律与研究热点探讨 [J]. 装备环境工程, 2019, 16(1): 107)
[15] Zou E M, Wang Z S, Ma C P. Temperature-salinity analysis of the west Pacific Ocean [J]. J. Oceanogr. Huanghai Bohai Seas, 1983, 1(2): 29
(邹娥梅, 王宗山, 马成璞. 西太平洋温盐分析 [J]. 黄渤海海洋, 1983, 1(2): 29)
[16] Pajkossy T. Impedance of rough capacitive electrodes [J]. J. Electroanal. Chem., 1994, 364: 111
doi: 10.1016/0022-0728(93)02949-I
[17] Costa F R, Franco D V, Da Silva L M. Electrochemical impedance spectroscopy study of the oxygen evolution reaction on a gas-evolving anode composed of lead dioxide microfibers [J]. Electrochim. Acta, 2013, 90: 332
doi: 10.1016/j.electacta.2012.12.043
[1] LI Tianyu, WANG Weikang, LI Yangtao, BAO Tengfei, ZHAO Mengfan, SHEN Xinxin, NI Lei, MA Qinglei, TIAN Huiwen. Corrosion Failure Mechanism of Ultra-high-performance Concretes Prepared with Sea Water and Sea Sand in an Artificial Sea Water Containing Sulfate[J]. 中国腐蚀与防护学报, 2023, 43(5): 1101-1110.
[2] SUN Shuo, YANG Jie, QIAN Xinzhu, CHANG Renli. Preparation and Electrochemical Corrosion Behavior of Electroless Plated Ni-Cr-P Alloy Coating[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
No Suggested Reading articles found!