Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (2): 280-288    DOI: 10.11902/1005.4537.2022.082
Current Issue | Archive | Adv Search |
Cyclic Hot Corrosion Behavior of DZ40M and K452 Superalloys Beneath Molten Deposit NaCl
SHEN Jubao1, CUI Yu2(), LIU Li1, LIU Rui1, MENG Fandi1, WANG Fuhui1
1.Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(23773KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The cyclic hot corrosion behavior of cobalt based DZ40M and nickel based K452 superalloys beneath molten deposit NaCl in air at 900 ℃ was studied by means of gravimetric method, XRD, SEM, EDS, scratch instrument and two-dimensional profilometer. The results of 15 cycle testing revealed that K452 is superior to DZ40M in corrosion resistance, which may be ascribed to the higher content of Al, Ti and Ni of K452 alloy. In other word, the formed external scale of NiTiO3 on K452 alloy can effectively prevent molten salt corrosion, while the inner scale of Al2O3 ensures the close bonding between the corrosion product scale and the matrix.

Key words:  DZ40M      K452      NaCl molten salt      cyclic hot corrosion     
Received:  23 March 2022      32134.14.1005.4537.2022.082
ZTFLH:  TG174  
Fund: National Key R&D Program of China(2017YFB0702303)
About author:  CUI Yu, E-mail: ycui@imr.ac.cn

Cite this article: 

SHEN Jubao, CUI Yu, LIU Li, LIU Rui, MENG Fandi, WANG Fuhui. Cyclic Hot Corrosion Behavior of DZ40M and K452 Superalloys Beneath Molten Deposit NaCl. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 280-288.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.082     OR     https://www.jcscp.org/EN/Y2023/V43/I2/280

Fig.1  Metallographic structures of DZ40M alloy (a) and K452 alloy (b)
Fig.2  Cyclic hot corrosion kinetics of DZ40M and K452 alloys (a) and K452 alloy (b) at 900 ℃
Fig.3  Macro morphologies of DZ40M alloy (a-d) and K452 alloy (e-h) after cyclic hot corrosion for 1 cycle (a, e), 2 cycles (b, f), 3 cycles (c, g) and 15 cycles (d, h)
Fig.4  XRD patterns of DZ40M alloy (a) and K452 alloy (b) after cyclic hot corrosion for different cycles
Fig.5  Cross-sectional morphologies and EDS element mappings of DZ40M alloy after cyclic hot corrosion for 1 cycle (a), 2 cycles (b), 3 cycles (c) and 15 cycles (d)
Fig.6  Surface morphologies and EDS analysis results of DZ40M alloy after cyclic hot corrosion for 1 cycle (a) and 15 cycles (b)
Fig.7  Cross-sectional morphologies and EDS element mappings of K452 alloy after cyclic hot corrosion for 1 cycle (a), 2 cycles (b), 3 cycles (c) and 15 cycles (d)
Fig.8  Surface morphologies and EDS analysis results of K452 alloy after cyclic hot corrosion for 1 cycle (a), 2 cycles (b), and 15 cycles (c)
Fig.9  Surface roughnesses (a, b) and comparison of surface roughnesses (c) of DZ40M alloy (a) and K452 alloy (b) after cyclic hot corrosion for different cycles
Fig.10  Adhesions of the oxide scales formed on K452 alloy after cyclic hot corrosion for 2 cycle (a), 3 cycles (b) and 15 cycles (c)
[1] Xie C C, Xie X D, Zhou Q. Failure mode effect and criticality analysis for APU high pressure turbine nozzle blade [J]. Aviat. Maint. Eng., 2016, (2): 78
(谢长城, 谢旭东, 周群. APU高压涡轮导向叶片的FMECA分析 [J]. 航空维修与工程, 2016, (2): 78)
[2] He X M, Chang H P. Technology ways and strategic countermeasures for developing heated ends of high thrust-to-weight ratio engine [J]. Aeronaut. Sci. Technol., 1999, (6): 32
(何小明, 常海萍. 高推重比发动机热端部件发展的技术途径与战略对策 [J]. 航空科学技术, 1999, (6): 32)
[3] Bu J L, Gao Z K, Han Z Y, et al. Cracking analysis of low pressure turbine guide blade of engine [J]. Fail. Anal. Prev., 2020, 15: 179
(卜嘉利, 高志坤, 韩振宇 等. 发动机低压涡轮导向叶片裂纹分析 [J]. 失效分析与预防, 2020, 15: 179)
[4] Zhao Y. Recrystallization behavior of a directionally solidified Co-base superalloy DZ40M [D]. Shenyang: Northeastern University, 2008
(赵阳. 定向凝固钴基高温合金DZ40M的再结晶行为 [D]. 沈阳: 东北大学, 2008)
[5] Duan C Y, Liu P S, Qing H B. High temperature oxidation performance investigation on the activation energy of a Co-base superalloy oxidized in air [J]. Mater. Lett., 2021, 283: 128792
doi: 10.1016/j.matlet.2020.128792
[6] Sun Z, Chen X, Zhang L X, et al. Experimental and numerical study of transient liquid phase diffusion bonded DZ40M superalloys [J]. Crystals, 2021, 11: 479
doi: 10.3390/cryst11050479
[7] Li J, Yuan C, Guo J T, et al. Effect of hot isostatic pressing on microstructure of cast gas-turbine vanes of K452 alloy [J]. Prog. Nat. Sci.: Mater. Int., 2014, 24: 631
doi: 10.1016/j.pnsc.2014.10.008
[8] Liu C J, Peng J Q. Four hot corrosion resistant materials for IGT blades [J]. Procedia Eng., 2015, 130: 662
doi: 10.1016/j.proeng.2015.12.292
[9] Fan J F, Liu G, Zhuo X S, et al. In-situ reaction synthesis Al2O3 overlay modified 7YSZ TBC for NaCl hot corrosion [J]. Ceram. Int., 2021, 47: 22404
doi: 10.1016/j.ceramint.2021.04.250
[10] Li F G, Yang L, Zhou Y C. Study advances of high temperature coating for aeroengine to resist marine atmospheric corrosion [J]. Therm. Spray Technol., 2019, 11(4): 1
(李发国, 杨丽, 周益春. 航空发动机高温涂层耐海洋大气腐蚀研究进展 [J]. 热喷涂技术, 2019, 11(4): 1)
[11] Prabhakaran D, Jegadeeswaran N, Somasundaram B, et al. Corrosion resistance by HVOF coating on gas turbine materials of cobalt based superalloy [J]. Mater. Today: Proc., 2020, 20: 173
[12] Jithesh K, Arivarasu M. An investigation on hot corrosion and oxidation behavior of cobalt-based superalloy L605 in the simulated aero-engine environment at various temperatures [J]. Mater. Res. Express, 2019, 6: 126530
doi: 10.1088/2053-1591/ab54dd
[13] Silva-Leon P D, Sotelo-Mazon O, Salinas-Solano G, et al. Hot corrosion behavior of Ni20Cr alloy in NaVO3 molten salt [J]. J. Mater. Eng. Perform., 2019, 28: 5047
doi: 10.1007/s11665-019-04235-4
[14] Chellaganesh D, Khan M A, Winowlin J T, et al. Cyclic oxidation and hot corrosion behavior of Nickel-Iron-based superalloy [J]. High Temp. Mater. Processes, 2018, 37: 173
doi: 10.1515/htmp-2016-0130
[15] Xiong Y, Liu G M, Zhan F Y, et al. Hot corrosion and failure behavior of three thermal spraying coatings in simulated atmosphere/coal ash environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 369
(熊义, 刘光明, 占阜元 等. 3种热喷涂涂层在模拟气氛/煤灰环境下的热腐蚀及失效行为 [J]. 中国腐蚀与防护学报, 2021, 41: 369)
[16] Yang B, Li M D, Liu G M, et al. Hot corrosion behavior of Inconel 625/NiCr coating prepared by HOVF [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 483
(杨波, 李茂东, 刘光明 等. 超音速喷涂Inconel625/NiCr合金涂层的热腐蚀行为 [J]. 中国腐蚀与防护学报, 2016, 36: 483)
[17] Mu M R, Li J Y, Shen J W, et al. Analysis and research on quality of exported aviation kerosene [J]. Refin. Chem. Ind., 2018, 29(5): 63
(牟明仁, 李巾英, 沈靖文 等. 出口航空煤油的质量检验分析 [J]. 炼油与化工, 2018, 29(5): 63)
[18] Garces H F, Tran A, Sternlicht H, et al. Sea-salt-induced moderate-temperature degradation of thermally-sprayed MCrAlY bond-coats [J]. Surf. Coat. Technol., 2020, 404: 126459
doi: 10.1016/j.surfcoat.2020.126459
[19] Yu Z F. Research for corrosion behavior of GH4169 alloy in marine high temperature normal temperature alternating environment [D]. Shenyang: Northeastern University, 2020
(余钟芬. 海洋高温-常温交替环境下GH4169合金腐蚀行为研究 [D]. 沈阳: 东北大学, 2020)
[20] Fu G Y, Zhao X, Liu Q, et al. Hot corrosion of cobalt-based alloy with (Na, K)2SO4 coating at 900 ℃ [J]. Adv. Mater. Res., 2011, 194-196: 1305
[21] Chang J X, Wang D, Liu X G, et al. Effect of rhenium addition on hot corrosion resistance of Ni-based single crystal superalloys [J]. Metall. Mater. Trans., 2018, 49A: 4343
[22] Song P, Liu M F, Jiang X W, et al. Influence of alloying elements on hot corrosion resistance of nickel-based single crystal superalloys coated with Na2SO4 salt at 900 ℃ [J]. Mater. Des., 2021, 197: 109197
doi: 10.1016/j.matdes.2020.109197
[1] Peisheng Liu. HIGH TEMPERATURE OXIDATION OF DZ40M ALLOY[J]. 中国腐蚀与防护学报, 1999, 19(6): 339-344 .
[2] Peisheng Liu. HIGH TEMPERATURE OXIDATION BEHAVIOR OF LOW PRESSURE GAS PHASE DEPOSITED ALUMINIDE COATINGS ON Co-BASE SUPERALLOY DZ40m[J]. 中国腐蚀与防护学报, 1999, 19(3): 144-150 .
No Suggested Reading articles found!