Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (2): 261-270    DOI: 10.11902/1005.4537.2022.075
Current Issue | Archive | Adv Search |
Effect of Low Temperature Degradation on Tribological Properties of YSZ Thermal Barrier Coatings
ZHOU Wenhui1, SONG Jian1, CHEN Zehao1(), YANG Lanlan2, WANG Jinlong1, CHEN Minghui1, ZHU Shenglong1,3, WANG Fuhui1,3
1.Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
2.School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
3.China Laboratory of Corrosion and Protection, Institute of Matel Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(15557KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

During in flight and grounded in port in marine environments, aero engine may experience high temperature and low temperature water vapor cycles, thus thermal barrier coatings should be suffered simultaneously from serious frictional wear during service, as well as hydrothermal corrosion aging at lower temperature during grounded in port, therefore, it seems to be intensively concerned how the low temperature hydrothermal aging affects the tribological performance of the TBCs. Hence, 8YSZ top-coat and NiCrAlY bond-coat were successively deposited on the single crystal superalloy N5 by APS, i.e., TBCs were constructed on the alloy surface. Then the frictional performance of the low temperature hydrothermal corrosion aged TBCs was assessed by means of MFT-5000 friction and wear tester, SEM and XRD. The results indicated that hydrothermal corrosion aging of the YSZ ceramic results in the occurrence of transformation from tetragonal phase to monoclinic phase, and the monoclinic phase mainly initiates at zirconia grain boundary, as a consequence, the cohesion of precipitated ZrO2 grains, and the wear resistance of the top coat would be gradually degraded. Slice delamination caused by brittle fracture was observed on the surface of the ceramic coating after long-term alternating corrosion degeneration or high termperature oxidation. Abrasive wear and adhesive wear were also found on the surface of the coatings. The wear mechanism of the low temperature hydrothermal corrosion aged coatings was microfracture, which induced by the exfoliation of YSZ grains.

Key words:  thermal barrier coating      low temperature hydrothermal aging      frictional wear     
Received:  15 March 2022      32134.14.1005.4537.2022.075
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(51801021);Ministry of Industry and Information Technology Project(MJ-2017-J-99);Fundamental Research Funds for the Central Universities(N2102015)
About author:  CHEN Zehao, E-mail: Chenzehao@mail.neu.edu.cn

Cite this article: 

ZHOU Wenhui, SONG Jian, CHEN Zehao, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Low Temperature Degradation on Tribological Properties of YSZ Thermal Barrier Coatings. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 261-270.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.075     OR     https://www.jcscp.org/EN/Y2023/V43/I2/261

CoatingArgon / L·min-1Helium / L·min-1Spray distance / mmGun speed / mm·s-1Gun interval / mmI / APowder feed rate / g·min-1
BC10030100V40010085020
TC805080V5008090020
Table 1  Parameters of TBC deposition by APS process
Fig.1  Surface (a) and cross-sectional (b) morphologies of the as-deposited TBC by APS
Fig.2  XRD patterns of the ceramic top coating after alternating corrosion for 10 cycles under different conditions
Fig.3  Cross-sectional morphologies of the as-deposited coating (a), and the samples H (b), A (c) and W (d) after alternating corrosion for 10 cycles
Fig.4  EBSD hierarchical images (a, d), Euler images (b, e) and phase distribution images (c, f) of the samples W (a-c) and A (d-f) after alternating corrosion for 10 cycles
Fig.5  Macro-morphologies of wear scars on the ceramic top coating of the samples H (a), A (b) and W (c) after alternating corrosion for 10 cycles
Fig.6  Coefficient of friction curves of the ceramic top coatings after corrosion at different atmosphere for 10 cycles
Fig.7  Worn surfaces of the ceramic top coatings of the samples H (a-c), A (d-f) and W (g-i) after alternating corrosion for 10 cycles
Fig.8  Schematic representations of phase transition of H group of samples (a) as-deposited coating; (b) water penetration in the ceramic top coating, the phase transformation of some YSZ grains from t-phase to m-phase happened, resulting in the volume expansion of the grains; (c) the m-phase transfomed to t-phase at high temperature and then the volume of the grains decreased. During this process, the accumulation of irreversible volume change induced the initiation of cracks
Fig.9  Worn surfaces of the ceramic top coating of the samples H (a-c), A (d) and W (e) after alternating corrosion for 10 cycles
[1] Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296: 280
pmid: 11951028
[2] Yang M, Li Z G, Wang X Y, et al. Effect of spraying ceramic powder pore structure on thermophysical properties of plasma-sprayed thermal barrier coatings [J]. Ceram. Int., 2022, 48: 1125
doi: 10.1016/j.ceramint.2021.09.197
[3] Evans A G, Mumm D R, Hutchinson J W, et al. Mechanisms controlling the durability of thermal barrier coatings [J]. Prog. Mater. Sci., 2001, 46: 505
doi: 10.1016/S0079-6425(00)00020-7
[4] Tian W, He A J, Zhong Y, et al. Application of thermal barrier coatings on aero-engines of high thrust-to-weight ratio [J]. Gas Turbine Exp. Res., 2016, 29(5): 52
(田伟, 何爱杰, 钟燕 等. 高推重比发动机热障涂层应用现状分析 [J]. 燃气涡轮试验与研究, 2016, 29(5): 52)
[5] Zhou F F, Wang Y, Wang L, et al. Synthesis and characterization of nanostructured t′-YSZ spherical feedstocks for atmospheric plasma spraying [J]. J. Alloy. Compd., 2018, 740: 610
doi: 10.1016/j.jallcom.2018.01.033
[6] Mondal K, Nuñez III L, Downey C M, et al. Recent advances in the thermal barrier coatings for extreme environments [J]. Mater. Sci. Energy Technol., 2021, 4: 208
[7] Duwez P, Brown F H, Odell F. The zirconia-yttria system [J]. J. Electrochem. Soc., 1951, 98: 356
doi: 10.1149/1.2778219
[8] Cao X Q. New Materials and Structures of Thermal Barrier Coating [M]. Beijing: Science Press, 2016: 166
(曹学强. 热障涂层新材料和新结构 [M]. 北京: 科学出版社, 2016: 166)
[9] Lughi V, Sergo V. Low temperature degradation -aging- of zirconia: a critical review of the relevant aspects in dentistry [J]. Dent. Mater., 2010, 26: 807
doi: 10.1016/j.dental.2010.04.006 pmid: 20537701
[10] Cales B. Zirconia as a sliding material: histologic, laboratory, and clinical data [J]. Clin. Orthop. Relat. Res., 2000, 379: 94
doi: 10.1097/00003086-200010000-00013
[11] Chevalier J, Gremillard L, Virkar A V, et al. The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends [J]. J. Am. Ceram. Soc., 2009, 92: 1901
doi: 10.1111/j.1551-2916.2009.03278.x
[12] Chevalier J, Gremillard L, Deville S. Low-temperature degradation of zirconia and implications for biomedical implants [J]. Annu. Rev. Mater. Res., 2007, 37: 1
doi: 10.1146/annurev.matsci.37.052506.084250
[13] Cao X Q, Vassen R, Wang J S, et al. Degradation of zirconia in moisture [J]. Corros. Sci., 2020, 176: 109038
doi: 10.1016/j.corsci.2020.109038
[14] Wang J S, Chen M D, Zhou X, et al. WITHDRAWN: the effect of hydrothermal corrosion on the phase stability, microstructure and thermal cycling behavior of n-YSZ coating [J]. J. Eur. Ceram. Soc., 2021, doi: 10.1016/j.jeurceramsoc.2021.05.048
[15] Dharini T, Kuppusami P, Kumar N, et al. Tribological properties of YSZ and YSZ/Ni-YSZ nanocomposite coatings prepared by electron beam physical vapour deposition [J]. Ceram. Int., 2021, 47: 26010
doi: 10.1016/j.ceramint.2021.06.006
[16] Stachowiak G W, Stachowiak G B. Unlubricated wear and friction of toughened zirconia ceramics at elevated temperatures [J]. Wear, 1991, 143: 277
doi: 10.1016/0043-1648(91)90102-Z
[17] Liu H W, Xue Q J, Lin L. Friction and wear behavior of 3Y-TZP ceramics and their mechanisms [J]. Tribology, 1996, 16: 6
(刘惠文, 薛群基, 林立. 氧化锆陶瓷的摩擦磨损行为与机理 [J]. 摩擦学报, 1996, 16: 6)
[18] Cattani-Lorente M, Durual S, Amez-Droz M, et al. Hydrothermal degradation of a 3Y-TZP translucent dental ceramic: a comparison of numerical predictions with experimental data after 2 years of aging [J]. Dent. Mater., 2016, 32: 394
doi: 10.1016/j.dental.2015.12.015 pmid: 26777095
[19] Li S J, An Y L, Zhou H D, et al. Plasma sprayed YSZ coatings deposited at different deposition temperatures, part 2: tribological performance [J]. Surf. Coat. Technol., 2018, 349: 998
doi: 10.1016/j.surfcoat.2018.06.093
[20] Zhang X X, Zhu D B, Liang J S. Progress on hydrothermal stability of dental zirconia ceramics [J]. J. Inorg. Mater., 2020, 35: 759
doi: 10.15541/jim20190401
(张晓旭, 朱东彬, 梁金生. 齿科氧化锆陶瓷水热稳定性研究进展 [J]. 无机材料学报, 2020, 35: 759)
doi: 10.15541/jim20190401
[21] Guo X. Hydrothermal degradation mechanism of tetragonal zirconia [J]. J. Mater. Sci., 2001, 36: 3737
doi: 10.1023/A:1017925800904
[22] Guo X, Schober T. Water incorporation in tetragonal zirconia [J]. J. Am. Ceram. Soc, 2004, 87: 746
doi: 10.1111/j.1551-2916.2004.00746.x
[23] Pandey A K, Biswas K. Effect of hydrothermal treatment on tribological properties of alumina and zirconia based bioceramics [J]. Ceram. Int., 2016, 42: 2306
doi: 10.1016/j.ceramint.2015.10.026
[24] Wang J S. Failure mechanism of zirconia thermal barrier coating [D]. Wuhan: Wuhan University of Technology, 2018
(王进双. 氧化锆热障涂层失效机理研究 [D]. 武汉: 武汉理工大学, 2018)
[25] He L M. High-Temperature Protective Coating [M]. Beijing: National Defense Industry Press, 2012: 54
(何利民. 高温防护涂层技术 [M]. 北京: 国防工业出版社, 2012: 54)
[26] Murray J W, Leva A, Joshi S, et al. Microstructure and wear behaviour of powder and suspension hybrid Al2O3-YSZ coatings [J]. Ceram. Int., 2018, 44: 8498
doi: 10.1016/j.ceramint.2018.02.048
[27] Hawthorne H M, Erickson L C, Ross D, et al. The microstructural dependence of wear and indentation behaviour of some plasma-sprayed alumina coatings [J]. Wear, 1997, 203/204: 709
[1] QU Weiwei, CHEN Zehao, PEI Yanling, LI Shusuo, WANG Fuhui. Spreading and Corrosion Behavior of CMAS Melt on Different Materials for Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[2] YU Bo, LI Zhang, ZHOU Kaixuan, TIAN Haoliang, FANG Yongchao, ZHANG Xiaomin, JIN Guo. High-temperature Performance of MoSi2 Modified YGYZ Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 812-820.
[3] HU Yunyuan, QIAN Wei, HUA Yinqun, YE Yunxia, CAI Jie, DAI Fengze. Effect of Pre-corrosion of Gd2Zr2O7 at 900-1300 ℃ on Its Hot Corrosion Behavior at 1250 ℃ Beneath Deposites of CaO-MgO-Al2O3-SiO2[J]. 中国腐蚀与防护学报, 2022, 42(4): 687-692.
[4] YU Chuntang,YANG Yingfei,BAO Zebin,ZHU Shenglong. Research Progress in Preparation and Development of Excellent Bond Coats for Advanced Thermal Barrier Coatings[J]. 中国腐蚀与防护学报, 2019, 39(5): 395-403.
[5] Lijia YU,Wenping LIANG,Hao LIN,Qiang MIAO,Biaozi HUANG,Shiyu CUI. Evaluation of Hot Corrosion Behavior of Laser As-remelted YSZ Thermal Barrier Coatings at 950 ℃[J]. 中国腐蚀与防护学报, 2019, 39(1): 77-82.
[6] Xizhong WANG,Jianhao WU,Hui PENG,Hongbo GUO,Shengkai GONG. Hot-gas Corrosion Resistance of La2Ce2O7/8YSZ Duble-ceramic-layered Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2017, 37(1): 36-40.
[7] Xinhui LI,Wen MA,Yichuan YIN,Bole MA,Yu BAI,Ruiling JIA,Hongying DONG. Optimization of Preparation Process of Solution Precursor Plasma Spraying for SrZrO3 Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2017, 37(1): 41-46.
[8] Lili CAI,Wen MA,Xinhui LI,Yichuan YIN,Bole MA,Yu BAI,Jun WANG,Hongying DONG. Corrosion Resistance of (Gd0.7Sr0.3)ZrO3.35 Coating against CaO-MgO-Al2O3-SiO2 (CMAS)[J]. 中国腐蚀与防护学报, 2017, 37(1): 47-52.
[9] Shanrong ZHANG,Hongying DONG,Wen MA,Yichuan YIN,Xinhui LI,Yu BAI,Ruiling JIA. Corrosion Resistance of Air Plasma Sprayed Thermal Barrier Coating SrZrO3 on Superalloy In718 against CaO-MgO-Al2O3-SiO2 (CMAS)[J]. 中国腐蚀与防护学报, 2017, 37(1): 53-57.
[10] LIU Yin, LIU Shimei, YU Luping, LIU Jun, JIANG Wei. Summary on Corrosion Behavior and Micro-arc Oxidation for Magnesium Alloys[J]. 中国腐蚀与防护学报, 2015, 35(2): 99-105.
[11] CHEN Chen,GUO Hongbo,GONG Shengkai. Failure Analysis of Thermal Barrier Coating Being Subjected to Lateral Thermal Gradient on Surface[J]. 中国腐蚀与防护学报, 2013, 33(5): 400-406.
[12] ;. RECENT DEVELOPMENT OF PERFORMANCE VALUATION ON THERMAL BARRIER COATINGS[J]. 中国腐蚀与防护学报, 2007, 27(5): 309-314 .
[13] LI yunduan; Shengkai Gong; Huibing Xv. FAILURE MECHANISM OF ONE SIDE COATED THERMAL BARRIER COATING[J]. 中国腐蚀与防护学报, 2006, 26(3): 146-151 .
[14] Changguang Deng; Ziqi Kuang. THE EFFECT OF LANTHANUM BEARING FERROSILICON TOTHE MICROSTRUCTURE AND PERFORMANCES OF TBCs GRADED COATING[J]. 中国腐蚀与防护学报, 2002, 22(3): 176-179 .
[15] Hexing Chen; Zhanpeng Jin; Kesong Zhou. STUDY OF CHARACTERISTICS OF NiCrAlY-ZrO2 INTERFACEIN THERMAL BARRIER COATINGS[J]. 中国腐蚀与防护学报, 2002, 22(2): 95-97 .
No Suggested Reading articles found!