|
|
Corrosion Behavior of Weld Joint of 690 MPa Weathering Bridge Steel in Simulated Industrial Atmosphere |
CHENG Peng1,2, LIU Jing1( ), MU Wenguang2, HUANG Feng1, HUANG Xianqiu2, PANG Tao2 |
1.State Key Laboratory of Refractories and Metallurgy, Hubei Engineering Technology Research Center of Marine Materials and Service Safety, Wuhan University of Science and Technology, Wuhan University of Science and Technology, Wuhan 430081, China 2.Central Research Institute, BaoShan Iron&Steel Co. Ltd., Wuhan 430081, China |
|
|
Abstract The corrosion behavior of weld joint of 690 MPa weathering bridge steel in simulated industrial atmosphere was investigated by periodic accelerated corrosion test, coupled with electrochemical test, scanning electron microscope (SEM), electron probe microanalyzer (EPMA) and other surface characterization techniques. The results show that in the early stage of corrosion, due to the difference of microstructure, the corrosion resistance of the weld zone composed mainly of ferrite is better than that of the base material composed mainly of bainite, the heat affected zone with bainite microstructure has the worst corrosion resistance due to the coarsened and non-uniformly distributed grains, however the potential difference between different areas of the welded joint does not cause galvanic corrosion. In the later stage of corrosion, Cu and Cr are obviously enriched in the rust layer in different areas of the welded joint, while Ni content in the rust layer at the weld zone is much higher than that at the base metal zone and the heat affected zone. Due to the large alloying element content in the weld zone, where the rust layer is more smooth and compact and has higher polarization resistance and impedance value,which may result in better corrosion resistance of the whole welded joint rather than the base metal.
|
Received: 11 April 2022
32134.14.1005.4537.2022.104
|
|
Fund: National Key Research and Development Program of China(2017YFB030480) |
1 |
Xiao X M. Study on the welding material with high strength and super corrosion resistance and the microstructure and properties of the welded joint [D]. Beijing: Central Iron & Steel Research Institute, 2014
|
|
肖晓明. 高强高耐候焊材及接头组织性能研究 [D]. 北京: 钢铁研究总院, 2014
|
2 |
Qu X M. Study on the microstructure and properties of the welded joint with weathering weld material for uncoating weathering bridge steel [D]. Qinghuangdao: Yanshan University, 2018
|
|
曲晓敏. 免涂装耐候桥梁钢用耐候焊材焊接接头的组织和力学性能研究 [D]. 秦皇岛: 燕山大学, 2018
|
3 |
Zheng K F, Zhang Y, Heng J L, et al. High strength weathering steel and its application and prospect in bridge engineering [J]. J. Harbin Inst. Technol., 2020, 52(3): 1
|
|
郑凯锋, 张宇, 衡俊霖 等. 高强度耐候钢及其在桥梁中的应用与前景 [J]. 哈尔滨工业大学学报, 2020, 52(3): 1
|
4 |
Shi J, Hu X W, Zhang D L, et al. Influence of microstructure on corrosion resistance of high strength weathering steel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 721
|
|
石践, 胡学文, 张道刘 等. 显微组织对高强耐候钢腐蚀性能的影响研究 [J]. 中国腐蚀与防护学报, 2021, 41: 721
|
5 |
Ding Y, Wang L W, Liu D Y, et al. Microstructure and properties of dissimilar metal welded joints of low alloy steel and duplex stainless steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 295
|
|
丁奕, 王力伟, 刘德运 等. 低合金钢与双相不锈钢异种金属焊接接头组织和性能的研究 [J]. 中国腐蚀与防护学报, 2022, 42: 295
|
6 |
Zhu J S, Guo X Y, Kang J F, et al. Research on corrosion behavior, mechanical property, and application of weathering steel in bridges [J]. China J. Highw. Transp., 2019, 32(5): 1
|
|
朱劲松, 郭晓宇, 亢景付 等. 耐候桥梁钢腐蚀力学行为研究及其应用进展 [J]. 中国公路学报, 2019, 32(5): 1
doi: 10.19721/j.cnki.1001-7372.2019.05.001
|
7 |
Zhuo X, Li L X, An T B, et al. Study on corrosion behavior of Q420qFNH weathering bridge steel welded joint [J]. Hot Work. Technol., 2021, 50(15): 20
|
|
卓晓, 李立新, 安同邦 等. Q420qFNH 耐候桥梁钢焊接接头的腐蚀行为研究 [J]. 热加工工艺, 2021, 50(15): 20
|
8 |
Zhang S J, Luo J, Liu D S. Corrosion resistance of Q500qENH heavy steel plate and its weld joint against industrial atmosphere [J]. Shanghai Met., 2014, 36(1): 18
|
|
张淑娟, 罗娇, 刘东升. Q500qENH特厚桥梁钢板及其焊接接头的耐腐蚀性能 [J]. 上海金属, 2014, 36(1): 18
|
9 |
Zhang F M, Fu X Y. Research on welding process of weathering bridge steels Q370qNH and Q420qNH [J]. Sci. Technol. Baotou Steel, 2020, 46(5): 59
|
|
张凤明, 付学义. 耐候桥梁钢Q370qNH、Q420qNH焊接工艺研究 [J]. 包钢科技, 2020, 46(5): 59
|
10 |
Wang J, Feng C, Peng B C, et al. Corrosion behavior of weld joint of S450EW steel in NaHSO3 solution [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 575
|
|
王军, 冯超, 彭碧草 等. S450EW焊接接头在NaHSO3溶液中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2017, 37: 575
|
11 |
Guo H, Cheng X D, Zhang H X, et al. Corrosion behavior of welded joint of low alloy high strength steel in 3.5%NaCl solution [J]. Hot Work. Technol., 2021, 50(13): 49
|
|
郭晗, 程旭东, 张慧霞 等. 低合金高强钢焊接接头在3.5%NaCl溶液中的腐蚀行为 [J]. 热加工工艺, 2021, 50(13): 49
|
12 |
Huang C, Huang F, Liu J, et al. Corrosion resistance of the welded joint of A710 high strength weathering steel [J]. J. Wuhan Univ. Sci. Technol., 2017, 40: 350
|
|
黄宸, 黄峰, 刘静 等. A710高强耐候钢焊接接头耐蚀性分析 [J]. 武汉科技大学学报, 2017, 40: 350
|
13 |
Cui K Q, Wu X Y, Zhang Z Y, et al. Salt fog corrosion behavior of SMA490BW weathering steel and its welded joints [J]. Hot Work. Technol., 2018, 47(13): 68
|
|
崔坤强, 吴向阳, 张志毅 等. SMA490BW耐候钢及其焊接接头的盐雾腐蚀行为 [J]. 热加工工艺, 2018, 47(13): 68
|
14 |
Gao X X, Liang X M, Liu B C, et al. Microstructure and corrosion resistance of new dissimilar steel welded joint [J]. Plat. Finish., 2019, 41(9): 13
|
|
高心心, 梁晓明, 刘保成 等. 新型异种钢接头组织和耐腐蚀性能研究 [J]. 电镀与精饰, 2019, 41(9): 13
|
15 |
Guo M X, Pan C, Wang Z Y, et al. A study on the initial corrosion behavior of carbon steel exposed to a simulated coastal-industrial atmosphere [J]. Acta Metall. Sin., 2018, 54: 65
doi: 10.11900/0412.1961.2017.00142
|
|
郭明晓, 潘晨, 王振尧 等. 碳钢在模拟海洋工业大气环境中初期腐蚀行为研究 [J]. 金属学报, 2018, 54: 65
doi: 10.11900/0412.1961.2017.00142
|
16 |
Shi J, Hu X W, He B, et al. Sulfuric acid corrosion resistance of Q345NS steel welded joint [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 565
|
|
石践, 胡学文, 何博 等. Q345NS钢焊接接头耐硫酸腐蚀特性研究 [J]. 中国腐蚀与防护学报, 2021, 41: 565
|
17 |
Nishikata A, Zhu Q J, Tada E. Long-term monitoring of atmospheric corrosion at weathering steel bridges by an electrochemical impedance method [J]. Corros. Sci., 2014, 87: 80
doi: 10.1016/j.corsci.2014.06.007
|
18 |
Luo H, Dong C F, Li X G, et al. The electrochemical behaviour of 2205 duplex stainless steel in alkaline solutions with different pH in the presence of chloride [J]. Electrochim. Acta, 2012, 64: 211
doi: 10.1016/j.electacta.2012.01.025
|
19 |
Gui J, Devine T M. The influence of sulfate ions on the surface enhanced Raman spectra of passive films formed on iron [J]. Corros. Sci., 1994, 36: 441
doi: 10.1016/0010-938X(94)90036-1
|
20 |
Cao X K, Huang F, Huang C, et al. Preparation of graphene nanoplate added zinc-rich epoxy coatings for enhanced sacrificial anode-based corrosion protection [J]. Corros. Sci., 2019, 159: 108120
doi: 10.1016/j.corsci.2019.108120
|
21 |
Zhang Y, Huang F, Hu Q, et al. Effect of micro-phase electrochemical activity on the initial corrosion dynamics of weathering steel [J]. Mater. Chem. Phys., 2020, 241: 122045
doi: 10.1016/j.matchemphys.2019.122045
|
22 |
Wu W, Cheng X Q, Zhao J B, et al. Benefit of the corrosion product film formed on a new weathering steel containing 3% nickel under marine atmosphere in Maldives [J]. Corros. Sci., 2020, 165: 108416
doi: 10.1016/j.corsci.2019.108416
|
23 |
Chao Y L, Zhou Y L, Di Q K, et al. Effect of micro-alloying elements on corrosion resistance of low carbon steels [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 70
|
|
晁月林, 周玉丽, 邸全康 等. Cu,P,Cr和Ni对低碳钢耐蚀性的影响 [J]. 中国腐蚀与防护学报, 2014, 34: 70
|
24 |
Zhang T Y, Liu W, Fan Y M, et al. Effect of synergistic action of Cu/Ni on corrosion resistance of low alloy steel in a simulated tropical marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 511
|
|
张天翼, 柳伟, 范玥铭 等. 海洋大气环境Cu/Ni协同作用对低合金钢耐蚀性影响 [J]. 中国腐蚀与防护学报, 2019, 39: 511
|
25 |
Yamashita M, Miyuki H, Matsuda Y, et al. The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century [J]. Corros. Sci., 1994, 36: 283
doi: 10.1016/0010-938X(94)90158-9
|
26 |
Cheng X Q, Jin Z, Liu M, et al. Optimizing the nickel content in weathering steels to enhance their corrosion resistance in acidic atmospheres [J]. Corros. Sci., 2017, 115: 135
doi: 10.1016/j.corsci.2016.11.016
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|