|
|
Research Progress on Monitoring Techniques for Corrosion Under Insulating Layer |
WANG Weijie1,2, HAN Jicheng1,2, MAO Yang3, GUAN Zichao1,2( ), DI Zhigang1,2, MIAO Lei1,2, MA Shengjun1,2 |
1.CNOOC Energy Technology & Services Limited Key Laboratory of Corrosion Protection for Offshore Oil Industry, Changzhou 213016, China 2.CNOOC Changzhou Paint and Coatings Industry Research Institute Co. Ltd., Changzhou 213016, China 3.PetroChina Sichuan Petrochemical Co. Ltd., Pengzhou 611930, China |
|
|
Abstract This paper reviews the research status of several technologies such as electrochemical noise, capacitive imaging, radio frequency identification, infrared thermography, distributed fiber optics, microwave, etc. in the application of monitoring and detection of corrosion under insulating layer (CUI). According to the history of the concerned CUI risks, the adopted CUI monitoring and detection technologies can be classified as three kinds, which are related to premise-, middle- and late-stages of the CUS risks to be examined respectively. It is discussed that the monitoring and detection technology for premise-stage is used to speculate the tendency of CUI, the monitoring and detection technology for later-stage can only detect the irreversible damage of metal loss to a certain extent. At the present, CUI monitoring and detection technology still has the problem in the inadequate data interpretation, while the accuracy and precision of the technology itself need to further be improved. This paper looks forward also to the future research direction in this field.
|
Received: 14 February 2022
32134.14.1005.4537.2022.039
|
|
Fund: Leading Innovative Talents Introduction and Cultivation Project of Changzhou(CQ20210028) |
1 |
Cullin M J, Birmingham G, Srinivasan R, et al. Injectable sodium bentonite inhibitors for corrosion under insulation [J]. J. Pipeline Syst. Eng. Pract., 2020, 11: 04020036
|
2 |
Burhani N, Muhammad M, Ismail M C. Corrosion under insulation rate prediction model for piping by two stages of artificial neural network [A]. 6th International Conference on Production, Energy and Reliability 2018: World Engineering Science & Technology Congress (ESTCON) [C]. 2018
|
3 |
Eltai E O, Musharavati F, Mahdi E S. Severity of corrosion under insulation (CUI) to structures and strategies to detect it [J]. Corros. Rev., 2019, 37: 553
doi: 10.1515/corrrev-2018-0102
|
4 |
Geary W. Analysis of a corrosion under insulation failure in a carbon steel refinery hydrocarbon line [J]. Case Stud. Eng. Failure Anal., 2013, 1: 249
|
5 |
Morey A. Corrosion under insulation revisited: Aren't we about to finish that project?[J]. Proc. Saf. Prog., 2018, 37(4): 502
doi: 10.1002/prs.12007
|
6 |
Tsai Y H, Wang J, Chien W T, et al. A BIM-based approach for predicting corrosion under insulation [J]. Autom. Constr., 2019, 107: 102923
doi: 10.1016/j.autcon.2019.102923
|
7 |
Ayello F, Hill D, Marion S, et al. Integrated sensor networks for corrosion under insulation: monitoring, cost reduction, and life extension strategies [A]. Corrosion 2011 [C]. Houston, 2011
|
8 |
Deif S, Daneshmand M. Multiresonant chipless RFID array system for coating defect detection and corrosion prediction [J]. IEEE Trans. Ind. Electron., 2020, 67: 8868
|
9 |
Cadelano G, Bortolin A, Ferrarini G, et al. Corrosion detection in pipelines using infrared thermography: experiments and data processing methods [J]. J. Nondestr. Eval., 2016, 35: 49
doi: 10.1007/s10921-016-0365-5
|
10 |
Amer A, Al-Shehri A, Cunningham V, et al. Artificial intelligence to enhance corrosion under insulation inspection [A]. International Petroleum Exhibition & Conference [C]. Abu Dhabi, 2020
|
11 |
Cao Q, Pojtanabuntoeng T, Esmaily M, et al. A Review of Corrosion under Insulation: A Critical Issue in the Oil and Gas Industry[J]. Metals, 2022, 12(4): 561
doi: 10.3390/met12040561
|
12 |
Amer A, Al Shehri A, Parrott B, et al. Thermography image processing with neural networks to identify corrosion under insulation (CUI) [P]. U.S. Pat, 10551297B2, 2020
|
13 |
Liu H F, Han Y, Feng X, et al. Test on tiny leakage and insulating layer damage monitoring of buried oil pipelines using distributed optical fiber temperature sensor [J]. Oil Gas Storage Trans., 2018, 37: 1114
|
|
刘洪飞, 韩阳, 冯新 等. 埋地管道微小泄漏与保温层破坏分布式光纤监测试验 [J]. 油气储运, 2018, 37: 1114
|
14 |
Thomas P J, Hellevang J O. A distributed fibre optic approach for providing early warning of corrosion under insulation (CUI) [J]. J. Loss Prev. Process Ind., 2020, 64: 104060
doi: 10.1016/j.jlp.2020.104060
|
15 |
Thomas P J, Hellevang J O. A high response polyimide fiber optic sensor for distributed humidity measurements [J]. Sens. Actuators, 2018, 270B: 417
|
16 |
Cho H, Tamura Y, Matsuo T. Monitoring of corrosion under insulations by acoustic emission and humidity measurement [J]. J. Nondestr. Eval., 2011, 30: 59
doi: 10.1007/s10921-011-0090-z
|
17 |
Simonetti F, Nagy P B, Bejjavarapu S M, et al. Long-range microwave detection of wet insulation for CUI mitigation [A]. Corrosion 2015 [C]. Dallas, 2015
|
18 |
Jones R E, Simonetti F, Lowe M J S, et al. Use of microwaves for the detection of water as a cause of corrosion under insulation [J]. J. Nondestr. Eval., 2012, 31: 65
doi: 10.1007/s10921-011-0121-9
|
19 |
Jones R E, Simonetti F, Lowe M J S, et al. Use of microwaves for the detection of corrosion under insulation: a sensitivity study [J]. AIP Conf. Proc., 2011, 1335: 1714
|
20 |
Alleyne D N, Pavlakovic B, Lowe M J S, et al. Rapid, long range inspection of chemical plant pipework using guided waves [J]. AIP Conf. Proc., 2001, 557: 180
|
21 |
Mudge P J. Field application of the teletest long-range ultrasonic testing technique [J]. Insight, 2001, 43: 74
|
22 |
Guo Q, Wu X Q, Xu S, et al Research status and progress of high temperature and high pressure on-line corrosion monitoring technology [J]. Corros. Sci. Prot. Technol., 2016, 28: 160
|
|
郭琦, 吴欣强, 徐松 等. 高温高压在线腐蚀监测技术研究现状与进展 [J]. 腐蚀科学与防护技术, 2016, 28: 160
|
23 |
Xia D H, Song S Z, Behnamian Y. Detection of corrosion degradation using electrochemical noise (EN): review of signal processing methods for identifying corrosion forms [J]. Corros. Eng., Sci. Technol., 2016, 51: 527
|
24 |
Zhang Z, Wu X Q, Tan J B. Review of electrochemical noise technique for in situ monitoring of stress corrosion cracking [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 223
|
|
张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展 [J]. 中国腐蚀与防护学报, 2020, 40: 223
|
25 |
Homborg A M, Tinga T, Van Westing E P M, et al. A critical appraisal of the interpretation of electrochemical noise for corrosion studies [J]. Corrosion, 2014, 70: 971
doi: 10.5006/1277
|
26 |
Li H J, Wang Q S, Liao Z H, et al. Electrochemical noise behavior of X70 steel and its weld in Cl--containing high pH solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 60
|
|
李鸿瑾, 王歧山, 廖子涵 等. X70钢及其焊缝在含Cl-高pH值溶液中电化学噪声行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 60
|
27 |
Wei Y J, Xia D H, Song S Z. Detection of SCC of 304 NG stainless steel in an acidic NaCl solution using electrochemical noise based on chaos and wavelet analysis [J]. Russ. J. Electrochem., 2016, 52: 560
doi: 10.1134/S1023193516060124
|
28 |
Hou Y, Pojtanabuntoeng T, Iannuzzi M. Use of electrochemical current noise method to monitor carbon steel corrosion under mineral wool insulation [J]. npj Mater. Degrad., 2020, 4: 39
doi: 10.1038/s41529-020-00144-3
|
29 |
Caines S. Development of a simplified electrochemical noise method to monitor assets under insulation [D]. St. Johns: Memorial University, 2016
|
30 |
Wu Y L, Zhang D P, Cai G Y, et al. Effects of temperature on polarity reversal of under deposit corrosion of mild steel in oilfield produced water [J]. Corros. Eng., Sci. Technol., 2020, 55: 708
|
31 |
Shi W, Wang T Z, Dong Z H, et al. Application of wire beam electrode technique to investigate the migrating behavior of corrosion inhibitors in mortar [J]. Constr. Build. Mater., 2017, 134: 167
doi: 10.1016/j.conbuildmat.2016.12.036
|
32 |
Aung N N, Wai W K, Tan Y J. A novel electrochemical method for monitoring corrosion under insulation [J]. Anti-Corros. Methods Mater., 2006, 53: 175
doi: 10.1108/00035590610665590
|
33 |
Zhang H. Radio frequency non-destructive testing and evaluation of defects under insulation [D]. Newcastle: Newcastle University, 2014
|
34 |
Alamin M. Passive low frequencey RFID for detection and monitoring of corrosion under paint and insulation [D]. Newcastle: Newcastle University, 2014
|
35 |
Yin X K, Gu Y, Li Z, et al. Retrieving dimensions of surface features on conductors covered by insulation using the maximum Variation Ratio (MVR) in capacitive imaging [J]. NDT & E Int., 2021, 117: 102384
doi: 10.1016/j.ndteint.2020.102384
|
36 |
Yin X K, Hutchins D A, Chen G M, et al. Detecting surface features on conducting specimens through an insulation layer using a capacitive imaging technique [J]. NDT & E Int., 2012, 52: 157
doi: 10.1016/j.ndteint.2012.08.004
|
37 |
Yin X K, Hutchins D A, Chen G M, et al. Studies of the factors influencing the imaging performance of the capacitive imaging technique [J]. NDT & E Int., 2013, 60: 1
doi: 10.1016/j.ndteint.2013.07.001
|
38 |
Li Z, Yin X K, Yan A, et al. Characterizing surface features on conducting specimens through an insulation layer using the capacitive imaging technique [J]. AIP Conf. Proc., 2016, 1706: 090003
|
39 |
Yin X K, Li Z, Yuan X A, et al. Corrosion depth inversion method based on the lift-off effect of the capacitive imaging (CI) technique [J]. IEEE Access, 2020, 8: 22770
doi: 10.1109/ACCESS.2020.2970204
|
40 |
Sipaun S, Ab Rahman M F, Hasan H, et al. Examination of corrosion under insulation using gamma ray computed tomography [A]. IOP Conference Series: Materials Science and Engineering [C]. Selangor, 2020: 012039
|
41 |
Abdul-Majid S, Balamesh A. Imaging corrosion under insulation by gamma ray backscattering method [A]. 18th World Conference on Nondestructive Testing [C]. Durban, 2012: 16
|
42 |
Abdul-Majid S, Balamesh A. Single side imaging of corrosion under insulation using single photon gamma backscattering [J]. Res. Nondestr. Eval., 2014, 25: 172
doi: 10.1080/09349847.2013.869376
|
43 |
Susiapan Y S L, Rahim R A, Pusppanathan J, et al. Portable gamma-ray tomography instrumentation for investigating corrosion under insulation of pipelines [A]. Proceedings of the 13th WSEAS International Conference on Circuits [C]. Rodos, 2009: 168
|
44 |
Xiong L, Sun Y J. Research on monitoring system for corrosion of pipeline under insulation and its application [J]. J. Saf. Sci. Technol., 2019, 15(11): 102
|
|
熊亮, 孙玉江. 保温层下管道腐蚀监测系统及应用研究 [J]. 中国安全生产科学技术, 2019, 15(11): 102
|
45 |
Bray A V, Corley C J, Fischer R B, et al. Development of guided wave ultrasonic techniques for detection of corrosion under insulation in metal pipe [A]. Proceedings of the 1998 ASME Energy Sources Technology Conference [C]. Houston, 1998
|
46 |
Cheng W Y. Pulsed eddy current testing of carbon steel pipes' wall-thinning through insulation and cladding [J]. J. Nondestr. Eval., 2012, 31: 215
doi: 10.1007/s10921-012-0137-9
|
47 |
Sophian A, Tian G Y, Taylor D, et al. A feature extraction technique based on principal component analysis for pulsed Eddy current NDT [J]. NDT & E Int., 2003, 36: 37
doi: 10.1016/S0963-8695(02)00069-5
|
48 |
Lorenz M, Sprachmann G. Method and system for detecting corrosion of an insulated corrosion prone object [P]. U.S. Pat, US-9267874-B2, 2016
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|