Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (4): 675-680    DOI: 10.11902/1005.4537.2021.191
Current Issue | Archive | Adv Search |
Corrosion Characteristics of Butt Welds of Q690 High Strength Steel in Laboratory Test as an Enviormental Simulation of Ocean Splash Zone
WEI Huanhuan1,2(), LEI Tianqi3, ZHENG Dongdong2(), XIN Zhenke4
1.School of Architectural Engineering, Yangling Vocational & Technical College, Xianyang 712100, China
2.State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
3.School of Road, Bridge & Architecture, Shaanxi Rallway Institute, Weinan 714099, China
4.Gansu Institute of Water & Hydropower Engineering Investigation Design and Research, Lanzhou 730000, China
Download:  HTML  PDF(1965KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion characteristics of butt welds of Q690 high strength steel in the ocean splash zone was studied via laboratory simulation with a desired accelerated corrosion scheme of cyclic immersion in artificial seawater and maintenance in hot and humid chamber, in terms of the macroscopic and microscopic corrosion morphology, mass loss, pit size, and corrosion depth etc., so that to acquire the corrosion regulation of the steel. The results show that as the corrosion cycle increases, the metal luster gradually darkens, more rusts emerge on the weld joints, the formed rust rather loose with pelling off can be seen at local areas. After 100 d of corrosion, the mass loss rate of the steel is 8.46%. The observation results of laser scanning confocal microscope (LSCM) show that surface deposits can inhibit corrosion from extending along the depth direction. The corrosion process gradually transforms from needle-like corrosion spots to corrosion pits, the average depths of pits in the weld zone and heat affected zone are about 311.01 and 333.24 μm, respectively. The research results are of great significance for the durability evaluation of domestic high strength steel in marine environment.

Key words:  Q690 high strength steel      butt weld      ocean splash zone      microscopic scan      mass loss rate      durability     
Received:  10 August 2021     
ZTFLH:  TU511.3  
Fund: National Natural Science Foundation of China(51978571);Yangling Vocational and Technical College 2021 Natural Science Foundation Project(ZK21-28)
Corresponding Authors:  WEI Huanhuan,ZHENG Dongdong     E-mail:  wh0402@qq.com;2512978427@qq.com
About author:  ZHENG Dongdong, E-mail: 2512978427@qq.com
WEI Huanhuan, E-mail: wh0402@qq.com

Cite this article: 

WEI Huanhuan, LEI Tianqi, ZHENG Dongdong, XIN Zhenke. Corrosion Characteristics of Butt Welds of Q690 High Strength Steel in Laboratory Test as an Enviormental Simulation of Ocean Splash Zone. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 675-680.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.191     OR     https://www.jcscp.org/EN/Y2022/V42/I4/675

Fig.1  Dimensions of test sample
Fig.2  Illustration of LSCM profile scanning regions of the sample after corrosion
Fig.3  Corrosion morphologies of the specimens after corrosion for different time: (a) CT0, (b) CT20, (c) CT40, (d) CT60, (e) CT80, (f) CT100
Corrosion time / dSpecimen codem0 / gm1 / gm0-m1/ gηs%ηs average value / %
20CT20-11309.581294.5215.061.151.80
CT20-21324.791292.4332.362.44
CT20-31321.211297.7623.451.77
CT20-41318.811294.7024.111.83
40CT40-11313.181271.0242.163.213.62
CT40-21314.171267.1647.013.58
CT40-31321.261274.9646.303.50
CT40-41323.571268.4155.164.17
60CT60-11310.371244.0366.345.065.48
CT60-21324.551243.6080.956.11
CT60-31321.341248.0673.285.55
CT60-41313.531245.5467.995.18
80CT80-11311.021229.3881.636.236.81
CT80-21320.491229.3291.176.90
CT80-31320.251227.3192.947.04
CT80-41319.601226.3293.287.07
100CT100-11312.551209.86102.697.828.46
CT100-21325.451207.46117.998.90
CT100-31318.991210.32108.678.24
CT100-41323.101205.46117.648.89
Table 1  Calculated data of mass loss rates of various specimens
Fig.4  Relationship between mass loss rate and corrosion time
Fig.5  LSCM surface micro-topographies of various specimens after corrosion for different cycles (a) corrosion morphology of CT20 specimen; (b) corrosion morphology of CT40 specimen; (c) corrosion morphology of CT60 specimen; (d) corrosion morphology of CT80 specimen; (e) corrosion morphology of CT100 specimen
Specimen codeAverage depth of WZ / μmAverage depth of HAZ / μmAverage width of WZ / μmAverage width of HAZ / μmAspect ratio of WZAspect ratio of HAZ
CT20116.443128.2361765.1431951.2420.0660.066
CT40140.367163.1542279.4972512.0250.0620.065
CT60172.580186.1632996.2322944.3480.0580.063
CT80232.322251.9973966.2145084.6750.0590.050
CT100311.010333.2445809.2836985.5130.0540.048
Table 2  Corrosion aspect ratios in the LSCM scanning areas of various specimens
Specimen codeηs / %WZHAZ
Average depth / μmξ / mm·a-1Average depth / μmξ / mm·a-1
CT201.80116.4432.16128.2362.34
CT403.62140.3671.28163.1541.49
CT605.48172.5801.05186.1631.13
CT806.81232.3221.06251.9971.15
CT1008.46311.0101.14333.2441.22
Table 3  Average corrosion rates of WZ and HAZ
Fig.6  Variations of pit sizes with corrosion time (a) relationship between the average corrosion depth and the corrosion time; (b) relationship between the average corrosion width and the corrosion time; (c) relationship between the aspect ratio of the pit and the corrosion time
Fig.7  3D stereograms of t, ηs and ξ for HAZ and WZ of the test specimen
1 Liu W, Wang J. Environmental impact of material corrosion research progress in marine splash zone [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 504
刘薇, 王佳. 海洋浪溅区环境对材料腐蚀行为影响的研究进展 [J]. 中国腐蚀与防护学报, 2010, 30: 504
2 Guo H C, Wei H H, Kou J L, et al. Mechanical properties test of butt welds of corroded Q690 high strength steel under the coupling of damp-heat cycle dipping [J]. Appl. Ocean Res., 2021, 111: 102677
doi: 10.1016/j.apor.2021.102677
3 Guo H C, Wei H H, Li G Q, et al. Experimental research on fatigue performance of butt welds of corroded Q690 high strength steel [J]. J. Constr. Steel Res., 2021, 184: 106801
doi: 10.1016/j.jcsr.2021.106801
4 Gkatzogiannis S, Weinert J, Engelhardt I, et al. Correlation of laboratory and real marine corrosion for the investigation of corrosion fatigue behaviour of steel components [J]. Int. J. Fatigue, 2019, 126: 90
doi: 10.1016/j.ijfatigue.2019.04.041
5 Guo Q, Liu J H, Yu M, et al. Influence of rust layers on the corrosion behavior of ultra-high strength steel 300M subjected to wet-dry cyclic environment with chloride and low humidity [J]. Acta Metall. Sin. (Engl. Lett.), 2015, 28: 139
6 Zhang S Y, Luo D, Yang Y, et al. Corrosion behaviours of 30CrMnSiA high-strength steel in industrial and marine atmosphere environments [J]. Equip. Environ. Eng., 2017, 14(5): 25
张世艳, 罗丹, 杨瑛 等. 30CrMnSiA高强钢在工业和海洋大气环境中的腐蚀行为研究 [J]. 装备环境工程, 2017, 14(5): 25
7 Guo H, Cheng X D, Zhang H X, et al. Corrosion behavior of welded joint of low alloy high strength steel in 3.5%NaCl solution [J]. Hot Work. Technol., 2021, 50(13): 49
郭晗, 程旭东, 张慧霞 等. 低合金高强钢焊接接头在3.5%NaCl溶液中的腐蚀行为 [J]. 热加工工艺, 2021, 50(13): 49
8 Liu Y, Yang W, Shi C Y. Alternate immersion corrosion of base metal and welded joint of N800CF high strength steel [J]. Hot Work. Technol., 2021, 50(1): 142
刘洋, 杨蔚, 史春元. N800CF高强钢母材与焊接接头的周浸腐蚀行为 [J]. 热加工工艺, 2021, 50(1): 142
9 Gong K, Wu M, Liu G X. Comparative study on corrosion behaviour of rusted X100 steel in dry/wet cycle and immersion environments [J]. Constr. Build. Mater., 2020, 235: 117440
doi: 10.1016/j.conbuildmat.2019.117440
10 Li Z Y, Wang G, Luo S W, et al. Early corrosion behavior of EH36 ship plate steel in tropical marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 463
李子运, 王贵, 罗思维 等. 热带海洋大气环境中EH36船板钢早期腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 463
11 Jiang J, Wang J Y, Jin W J, et al. Research progress on corrosion and anti-corrosion technology of ribbed steel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 439
姜军, 王军阳, 金武俊 等. 带肋钢腐蚀及其防腐蚀技术研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 439
12 Ministry of Housing and Urban-Rural Construction of the People's Republic of China. Code for welding of steel structures [S]. Beijing: China Building Industry Press, 2012
中华人民共和国住房和城乡建设部. 钢结构焊接规范 [S]. 北京: 中国建筑工业出版社, 2012
13 Hou B R, Zhang D, Wang P. Marine corrosion and protection: current status and prospect [J]. Bull. Chin. Acad. Sci., 2016, 31: 1326
侯保荣, 张盾, 王鹏. 海洋腐蚀防护的现状与未来 [J]. 中国科学院院刊, 2016, 31: 1326
14 Ye J H, Shen H Q, Xue S D. Simplified analytical method of mechanical property degradation for steel members with pitting corrosion [J]. J. Harbin Inst. Technol., 2016, 48(12): 70
叶继红, 申会谦, 薛素铎. 点蚀孔腐蚀钢构件力学性能劣化简化分析方法 [J]. 哈尔滨工业大学学报, 2016, 48(12): 70
15 Wei H H. Research on fatigue performance of butt welds of corroded Q690 high strength steel in humid and hot immersion environment [D]. Xi'an: Xi'an University of Technology, 2021
魏欢欢. 湿热周浸环境下锈蚀Q690高强钢对接焊缝疲劳性能研究 [D]. 西安: 西安理工大学, 2021
16 Hou B R. My passion for the corrosion protection of ocean splash zone [J]. Mar. Sci., 2020, 44(7): 179
侯保荣. 我的海洋浪花飞溅区腐蚀情缘 [J]. 海洋科学, 2020, 44(7): 179
[1] CHEN Xuandong, ZHANG Qing, GU Xin, LI Xing. Probability Analysis on Service Life Prediction of Reinforced Concrete Structures[J]. 中国腐蚀与防护学报, 2021, 41(5): 673-678.
[2] WANG Pengsheng, LI Chuanfu, NI Jingxu. Durability Analysis and Lifetime Calculation of Silane Impregnated Concrete Structure[J]. 中国腐蚀与防护学报, 2021, 41(5): 712-716.
[3] Kai WANG, Yaoyong YI, Qinghua LU, Jianglong YI, Zexin JIANG, Jinjun MA, Yu ZHANG. Effect of Peak Temperatures on Corrosion Behavior of Thermal Simulated Narrow-gap Weld Q690 High Strength Steel[J]. 中国腐蚀与防护学报, 2018, 38(5): 447-454.
[4] Jianghong MAO,Weiliang JIN,Hua ZHANG,Chen XU,Jin XIA. Technology for Enhancing Durability of Structures of Sea-sand Concrete and Its Application[J]. 中国腐蚀与防护学报, 2015, 35(6): 563-570.
[5] XU Chen,YUE Zengguo,JIN Weiliang. Research on Reinforcement Corrosion in Concrete by Using Electrochemical Frequency Modulation Technology[J]. 中国腐蚀与防护学报, 2013, 33(2): 136-140.
[6] . Research Progress of Thiobacilli on Concrete corrosion[J]. 中国腐蚀与防护学报, 2007, 27(6): 373-378 .
No Suggested Reading articles found!