Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (2): 186-192    DOI: 10.11902/1005.4537.2021.042
Current Issue | Archive | Adv Search |
Research Progress of Pt-modified Aluminide Coating on Nickel-base Superalloys
QIU Panpan1, SHU Xiaoyong1(), HU Linli2, YANG Tao1, FANG Yuqing1
1.Jiangxi Provincial Engineering Research Center for Surface Technology of Aeronautical Materials, School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
2.School of Mechanical Engineering, Jiangxi Vocational College of Mechanical and Electrical Technology, Nanchang 330013, China
Download:  HTML  PDF(1824KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

This article reviews the Pt modified β-(Ni,Pt)Al coating and γ-γ' type coating with nickel-based superalloy as the substrate, and focuses on the preparation process of the Pt modified aluminide coating, the variation of the coating microstructure with processing parameters, the mechanism of Pt enhancing the oxidation resistance of the aluminide coating, the effect of Al on the high temperature oxidation performance of the coating, and the degradation process of the coating in terms of element interdiffusion, phase transition, and surface undulation. Finally, the development of Pt modified aluminide coating is prospected.

Key words:  Pt modified aluminide coating      microstructural      high temperature oxidation performance      research progress     
Received:  06 March 2021     
ZTFLH:  TG172  
Fund: Special Fund for Postgraduate Innovation of Nanchang Hangkong University(YC2020-003)
Corresponding Authors:  SHU Xiaoyong     E-mail:  xiaoyong202@126.com
About author:  SHU Xiaoyong, E-mail: xiaoyong202@126.com

Cite this article: 

QIU Panpan, SHU Xiaoyong, HU Linli, YANG Tao, FANG Yuqing. Research Progress of Pt-modified Aluminide Coating on Nickel-base Superalloys. Journal of Chinese Society for Corrosion and protection, 2022, 42(2): 186-192.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.042     OR     https://www.jcscp.org/EN/Y2022/V42/I2/186

Fig.1  Typical microstructures of plain aluminide coatings: (a) inward-growing type and (b) outward-growing type[30]
Fig.2  Schematics of various microstructures observed in an inward grown Pt modified aluminide coating: (a) one limiting microstructure with the outer layer constituting of single-phase ξ-PtAl2, (b) the other limiting microstructure with the outer layer showing a single-phase β-NiAl structure in which the entire amount of Pt remains in solid solution and (c) the coating structure between these extremes where the outer layer exhibits a two-phase microstructure consisting of ξ and β phases[35,36]
Fig.3  Surface morphology (a) and cross-sectional microstructure (b) of an outward grown Pt modified aluminide coating on the baseline CMSX-4 superalloy[41]
Fig.4  Typical microstructure of Pt modified γ-γ' type aluminide coating on nickel-based superalloy. 1 and 2 denote the OL and IDZ zone of the coating, respectively[52]
Fig.5  Schematic illustrations of the major diffusion fluxes of Ni, Al and vacancy (V) during oxidation of bond coat, and microstructure evolution leading to rumpling or cavity formation[73]
1 Caron P, Khan T. Evolution of Ni-based superalloys for single crystal gas turbine blade applications [J]. Aerosp. Sci. Technol., 1999, 3: 513
2 Liu L, Zhang J, Ai C. Nickel-based superalloys [J]. Encyc. Mater. Met. Alloy., 2022, 1: 294
3 Furrer D, Fecht H. Ni-based superalloys for turbine discs [J]. JOM, 1999, 51(1): 14
4 Ren Y, Qian Y H, Zhang X T, et al. Effect of thermal shock on mechanical properties of siliconized graphite with ZrB2-SiC-La2O3/SiC coating [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 29
任岩, 钱余海, 张鑫涛等. 热震对包覆ZrB2-SiC-La2O3/SiC涂层渗硅石墨力学性能的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 29
5 Zuo L C. Study on high temperature oxidation resistance of Pt-modified aluminide coatings on K438 superalloy [D]. Xiangtan: Xiangtan University, 2020
左林春. K438合金铂改性铝化物涂层的高温抗氧化性研究 [D]. 湘潭: 湘潭大学, 2020
6 Galetz M C. Coatings for Superalloys [M]. InTech: Supperalloys, 2015: 277
7 Zhang C, Lv C L, Liang C, et al. Comparative study on diffusion coating of Co-Al by VPA and CVD on gas turbine blade [J]. J. Eng. Therm. Energy Power, 2017, 32(S1): 57
张超, 吕成林, 梁晨等. 涡轮叶片VPA法与CVD方法渗钴铝比较研究 [J]. 热能动力工程, 2017, 32(S1): 57
8 Dun Y Z, Wu Y, Zhang L. Research progress of application of CVD method in preparation of modified aluminide coating on nickel base superalloy [J]. Heat Treat. Met., 2018, 43(3): 145
顿易章, 吴勇, 张磊. CVD法在镍基高温合金表面制备改性铝化物涂层的研究进展 [J]. 金属热处理, 2018, 43(3): 145
9 Liu L, Yang F, Wu Y. Preparation of Si-modified aluminide coating by CVD process [J]. Heat Treat. Met., 2016, 41(7): 79
刘磊, 杨甫, 吴勇. 硅改性铝化物涂层的CVD制备工艺 [J]. 金属热处理, 2016, 41(7): 79
10 Kukla D, Brynk T, Pakieła Z. Assessment of fatigue resistance of aluminide layers on MAR 247 nickel super alloy with full-field optical strain measurements [J]. J. Mater. Eng. Perform., 2017, 26: 3621
11 Tabaza T A, Tabaza O T, Al-Sakarneh A. CVD technology for preparing chromium oxide coatings, study of the kinetics of growth of coatings [J]. Key Eng. Mater., 2018, 765: 193
12 Zagula-Yavorska M, Sieniawski J. Cyclic oxidation of palladium modified and nonmodified aluminide coatings deposited on nickel base superalloys [J]. Arch. Civ. Mech. Eng., 2018, 18: 130
13 Dryzek E, Romanowska J, Skowron K. Positron annihilation studies of modified aluminide coatings on nickel and nickel superalloy [J]. Russ. J. Non-Ferr. Met., 2020, 61: 608
14 Goral M, Ochal K, Kubaszek T, et al. The influence of deposition technique of aluminide coatings on oxidation resistance of different nickel superalloys [J]. Mater. Today: Proc., 2020, 33: 1746
15 Zhang L, Wu Y, Xia S Y, et al. Hot corrosion behavior of platinum modified aluminide coatings deposited by chemical vapor deposition method [J]. Mater. Prot., 2020, 53(3): 1
张磊, 吴勇, 夏思瑶等. CVD法Pt改性铝化物涂层的制备及其热腐蚀行为研究 [J]. 材料保护, 2020, 53(3): 1
16 Lan H, Zhang W G, Yang Z G. Investigation of Pt-Dy co-doping effects on isothermal oxidation behavior of (Co, Ni)-based alloy [J]. J. Rare Earth., 2012, 30: 928
17 Jackson R W, Lipkin D M, Pollock T M. The oxidation and rumpling behavior of overlay B2 bond coats containing Pt, Pd, Cr and Hf [J]. Surf. Coat. Technol., 2013, 221: 13
18 Rastegari S, Arabi H, Aboutalebi M R, et al. A study on the microstructural changes of Cr-modified aluminide coatings on a nickel-based superalloy during hot corrosion [J]. Can. Metall. Quart., 2008, 47: 223
19 Fan Q X, Yu H J, Wang T G, et al. Microstructure and oxidation resistance of a Si doped platinum modified aluminide coating deposited on a single crystal superalloy [J]. Coatings, 2018, 8: 264
20 Clarke D R, Levi C G. Materials design for the next generation thermal barrier coatings [J]. Annu. Rev. Mater. Res., 2003, 33: 383
21 Mumm D R, Evans A G. Mechanisms controlling the performance and durability of thermal barrier coatings [J]. Key Eng. Mater., 2001, 197: 199
22 Tatlock G J, Hurd T J, Punni J S. High temperature degradation of nickel based alloys [J]. Platin. Met. Rev., 1987, 31: 26
23 Fountain J G, Golightly F A, Stott F H, et al. The influence of platinum on the maintenance of α-Al2O3 as a protective scale [J]. Oxid. Met., 1976, 10: 341
24 Haynes J A, Pint B A, More K L, et al. Influence of Sulfur, Platinum, and Hafnium on the oxidation behavior of CVD NiAl bond coatings [J]. Oxid. Met., 2002, 58: 513
25 Yang Y F, Jiang C Y, Bao Z B, et al. Effect of aluminisation characteristics on the microstructure of single phase β-(Ni, Pt)Al coating and the isothermal oxidation behaviour [J]. Corros. Sci., 2016, 106: 43
26 Tawancy H M, Abbas N M, Rhys-Jones T N. Effect of substrate composition on the oxidation behavior of platinum-aluminized nickel-base superalloys [J]. Surf. Coat. Technol., 1992, 54/55: 1
27 Schaeffer J C, Murphy W H, Smialek J L. The effect of surface condition and sulfur on the environmental resistance of airfoils [J]. Oxid. Met., 1995, 43: 1
28 Lee W Y, Wright I G, Pint B A, et al. Effects of sulfur impurity on the scale adhesion behavior of a desulfurized Ni-based superalloy aluminized by chemical vapor deposition [J]. Metall. Mater. Trans., 1998, 29A: 833
29 Tawancy H M, Abbas N M, Rhys-Jones T N. Role of platinum in aluminide coatings [J]. Surf. Coat. Technol., 1991, 49: 1
30 Goward G W, Boone D H. Mechanisms of formation of diffusion aluminide coatings on nickel-base superalloys [J]. Oxid. Met., 1971, 3: 475
31 Das D K, Joshi S V, Singh V. Evolution of aluminide coating microstructure on nickel-base cast superalloy CM-247 in a single-step high-activity aluminizing process [J]. Metall. Mater. Trans., 1998, 29A: 2173
32 Das D K, Murphy K S, Ma S W, et al. Formation of secondary reaction zones in diffusion aluminide-coated Ni-base single-crystal superalloys containing ruthenium [J]. Metall. Mater. Trans., 2008, 39A: 1647
33 Angenete J, Stiller K. Comparison of inward and outward grown Pt modified aluminide diffusion coatings on a Ni based single crystal superalloy [J]. Surf. Coat. Technol., 2002, 150: 107
34 Alam M Z, Srivathsa B, Kamat S V, et al. Mechanism of failure in a free-standing Pt-aluminide bond coat during tensile testing at room temperature [J]. Mater. Sci. Eng., 2010, 527A: 842
35 Das D K, Joshi SV, Singh V. Effect of prealuminizing diffusion treatment on microstructural evolution of high-activity Pt-aluminide coatings [J]. Metall. Mater. Trans., 2000, 31A: 2037
36 Krishna G R, Das D K, Singh V, et al. Role of Pt content in the microstructural development and oxidation performance of Pt-aluminide coatings produced using a high-activity aluminizing process [J]. Mater. Sci. Eng., 1998, 251A: 40
37 Pauletti E, d’Oliveira A S C M. Influence of Pt concentration on structure of aluminized coatings on a Ni base superalloy [J]. Surf. Coat. Technol., 2017, 332: 57
38 Wang Y Q, Sayre G. Factors affecting the microstructure of platinum-modified aluminide coatings during a vapor phase aluminizing process [J]. Surf. Coat. Technol., 2009, 203: 1264
39 Warnes B M, Punola D C. Clean diffusion coatings by chemical vapor deposition [J]. Surf. Coat. Technol., 1997, 94/95: 1
40 Das D K. Microstructure and high temperature oxidation behavior of Pt-modified aluminide bond coats on Ni-base superalloys [J]. Prog. Mater. Sci., 2013, 58: 151
41 Tolpygo V K, Murphy K S, Clarke D R. Effect of Hf, Y and C in the underlying superalloy on the rumpling of diffusion aluminide coatings [J]. Acta Mater., 2008, 56: 489
42 Pollock T M. The growth and elevated temperature stability of high refractory nickel-base single crystals [J]. Mater. Sci. Eng., 1995, 32B: 255
43 Das D K, Roy M, Singh V, et al. Microstructural degradation of plain and platinum aluminide coatings on superalloy CM247 during isothermal oxidation [J]. Mater. Sci. Technol., 1999, 15: 1199
44 Chen J H, Little J A. Degradation of the platinum aluminide coating on CMSX4 at 1100℃ [J]. Surf. Coat. Technol., 1997, 92: 69
45 Tolpygo V K, Clarke D R. Surface rumpling of a (Ni, Pt)Al bond coat induced by cyclic oxidation [J]. Acta Mater., 2000, 48: 3283
46 Rickerby D S, Bell S R, Wing R G. Method of applying a thermal barrier coating to a superalloy article and a thermal barrier coating [P]. U.S. Pat, 5667663, 1997
47 Gleeson B, Sordelet D, Wang W. High-temperature coatings with Pt metal modified γ-Ni+γ′-NiAl alloy compositions [P]. U.S. Pat, 7273662, 2007
48 Gleeson B, Mu N, Hayashi S. Compositional factors affecting the establishment and maintenance of Al2O3 scales on Ni-Al-Pt systems [J]. J. Mater. Sci., 2009, 44: 1704
49 Wang S X, Li J C, Wang Q T, et al. Application and development of platinum modified aluminide coating [J]. Therm. Spray Technol., 2020, 12(3): 18
王世兴, 李建超, 王秋童等. 铂改性铝化物涂层的应用与发展 [J]. 热喷涂技术, 2020, 12(3): 18
50 Hayashi S, Ford S I, Young D J, et al. α-NiPt(Al) and phase equilibria in the Ni-Al-Pt system at 1150 ℃ [J]. Acta Mater., 2005, 53: 3319
51 Stacy J P, Zhang Y, Pint B A, et al. Synthesis and oxidation performance of Al-enriched γ+γ′ coatings on Ni-based superalloys via secondary aluminizing [J]. Surf. Coat. Technol., 2007, 202: 632
52 Das D K, Gleeson B, Murphy K S, et al. Formation of secondary reaction zone in ruthenium bearing nickel based single crystal superalloys with diffusion aluminide coatings [J]. Mater. Sci. Technol., 2009, 25: 300
53 Allam I M, Akuezue H C, Whittle D P. Influence of small Pt additions on Al2O3 scale adherence [J]. Oxid. Met., 1980, 14: 517
54 Nowok J. Formation mechanisms of keying or pegging yttrium oxide and increased plasticity of alumina scale on FeCrAlY [J]. Oxid. Met., 1982, 18: 1
55 Niu Y, Wu W T, Bonne D H, et al. Oxidation behaviour of simple and Pt-modified aluminide coatings on IN738 at 1100 ℃ [J]. J. Phys. IV Proc., 1993, 3: C9-511
56 Cadoret Y, Monceau D, Bacos M P, et al. Effect of platinum on the growth rate of the oxide scale formed on cast nickel aluminide intermetallic alloys [J]. Oxid. Met., 2005, 64: 185
57 Jiang C, Sordelet D J, Gleeson B. Site preference of ternary alloying elements in Ni3Al: A first-principles study [J]. Acta Mater., 2006, 54: 1147
58 Felten E J. Use of platinum and rhodium to improve oxide adherence on Ni-8Cr-6Al alloys [J]. Oxid. Met., 1976, 10: 23
59 Tatlock G J, Hurd T J. Platinum and the oxidation behavior of a nickel based superalloy [J]. Oxid. Met., 1984, 22: 201
60 Tawancy H M, Sridhar N, Abbas N M, et al. Comparative thermal stability characteristics and isothermal oxidation behavior of an aluminized and a Pt-aluminized Ni-base superalloy [J]. Scr. Metall. Mater., 1995, 33: 1431
61 Dai J W, Yi J, Wang Z K, et al. High temperature oxidation behavior of Pt modified aluminide coating on single crystal superalloy [J]. J. Aeronaut. Mater., 2015, 35(5): 32
戴建伟, 易军, 王占考等. 单晶高温合金铂改性铝化物涂层的高温氧化行为 [J]. 航空材料学报, 2015, 35(5): 32
62 Marino K A, Carter E A. The effect of platinum on defect formation energies in β-NiAl [J]. Acta Mater., 2008, 56: 3502
63 Svensson H, Christensen M, Knutsson P, et al. Influence of Pt on the metal-oxide interface during high temperature oxidation of NiAl bulk materials [J]. Corros. Sci., 2009, 51: 539
64 Yu C T, Liu H, Ullah A, et al. High-temperature performance of (Ni, Pt)Al coatings on second-generation Ni-base single-crystal superalloy at 1100 ℃: Effect of excess S impurities [J]. Corros. Sci., 2019, 159: 108115
65 Hou P Y, Tolpygo V K. Examination of the platinum effect on the oxidation behavior of nickel-aluminide coatings [J]. Surf. Coat. Technol., 2007, 202: 623
66 Hou P Y, Izumi T, Gleeson B. Sulfur Segregation at Al2O3/γ-Νi+γ′-Ni3Al Interfaces: Effects of Pt, Cr and Hf Additions [J]. Oxid. Met., 2009, 72: 109
67 Yu C T, Yang Y F, Bao Z B, et al. Research progress in preparation and development of excellent bond coats for advanced thermal barrier coatings [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 395
余春堂, 阳颖飞, 鲍泽斌等. 先进高温热障涂层用高性能粘接层制备及研究进展 [J]. 中国腐蚀与防护学报, 2019, 39: 395
68 Vialas N, Monceau D. Effect of Pt and Al content on the long-term, high temperature oxidation behavior and interdiffusion of a Pt-modified aluminide coating deposited on Ni-base superalloys [J]. Surf. Coat. Technol., 2006, 201: 3846
69 Das D K, Singh V, Joshi S V. Effect of Al content on microstructure and cyclic oxidation performance of Pt-aluminide coatings [J]. Oxid. Met., 2002, 57: 245
70 Angenete J, Stiller K. A comparative study of two inward grown Pt modified Al diffusion coatings on a single crystal Ni base superalloy [J]. Mater. Sci. Eng., 2001, 316A: 182
71 Hao J P. Study on the interdiffusion behavior of nickel base single crystal superalloy and platinum aluminum coating [D]. Guangzhou: Guangdong University of Technology, 2020
郝菊萍. 镍基单晶高温合金与铂铝涂层之间的互扩散行为研究 [D]. 广州: 广东工业大学, 2020
72 Liu H. Preparation and performance investigation of low-diffusion platinum-modified aluminum coating on single crystal superalloys [D]. Hefei: University of Science and Technology of China, 2020
刘贺. 单晶高温合金用低扩散铂铝涂层的制备及性能研究 [D]. 合肥: 中国科学技术大学, 2020
73 Zhang Y, Haynes J A, Pint B A, et al. Martensitic transformation in CVD NiAl and (Ni, Pt) Al bond coatings [J]. Surf. Coat. Technol., 2003, 163/164: 19
74 Xu Z H, Wang Z K, Niu J, et al. Phase structure, morphology evolution and protective behaviors of chemical vapor deposited (Ni, Pt)Al coatings [J]. J. Alloy. Compd., 2016, 676: 231
75 Tolpygo V K, Clarke D R. On the rumpling mechanism in nickel-aluminide coatings: Part I: An experimental assessment [J]. Acta Mater., 2004, 52: 5115
76 Tolpygo V K, Clarke D R. Rumpling of CVD (Ni, Pt)Al diffusion coatings under intermediate temperature cycling [J]. Surf. Coat. Technol., 2009, 203: 3278
77 Deb P, Boone D H, Manley T F II. Surface instability of platinum modified aluminide coatings during 1100 ℃ cyclic testing [J]. J. Vac. Sci. Technol., 1987, 5A: 3366
78 Li S, Xu M M, Zhang C Y, et al. Co-doping effect of Hf and Y on improving cyclic oxidation behavior of (Ni, Pt)Al coating at 1150 ℃ [J]. Corros. Sci., 2021, 178: 109093
[1] CHEN Chao,LIANG Yanfen,LIANG Tianquan,MAN Quanyan,LUO Yidong,ZHANG Xiuhai,ZENG Jianmin. Research Progress on Hot Corrosion of Rare Earth Oxides Co-doped ZrO2 Ceramic Coatings in Molten Na2SO4+NaVO3 Salts[J]. 中国腐蚀与防护学报, 2019, 39(4): 291-298.
[2] Wei LI,Yanxia DU,Zitao JIANG,Minxu LU. Research Progress on AC Interference of Electrified Railway on Buried Pipeline[J]. 中国腐蚀与防护学报, 2016, 36(5): 381-388.
[3] . Recent Progress in Study of Non-toxic Antifouling Coatings[J]. 中国腐蚀与防护学报, 2008, 28(3): 181-185 .
No Suggested Reading articles found!