Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (1): 79-84    DOI: 10.11902/1005.4537.2020.245
Current Issue | Archive | Adv Search |
Effect of Structural Stability on Electrochemical Corrosion Properties of Zr-based Amorphous Alloy
YAN Zhu, ZHANG Chenyang, WANG Lixin, YUAN Guo(), ZHANG Yuanxiang, FANG Feng, WANG Yang, KANG Jian
School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
Download:  HTML  PDF(7332KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Zr55Cu30Al10Ni5 amorphous alloy with high energy state and high free volume content was prepared by twin-roll rolling method. Then the effect of structural stability on the electrochemical properties of the prepared amorphous alloy in 3.5% (mass fraction) NaCl solution was studied. The results show that the free volume of the annealed alloy is smaller than that of the as-cast one, while the former one suffered from pitting corrosion during the potentiodynamic polarization test. The size and number of the electrochemical corrosion test induced corrosion pits are reduced on the surface of the alloy annealed in vacuum at 653 K (lower than Tg) for 30 min. The size of corrosion pits become smaller and the number of pits increases for the alloy annealed at 693 and 723 K (between Tg and Tx) respectively. The nano-crystallites formed in the amorphous alloy may increase its pitting sensitivity, the decrease of free volume in the matrix may hinder the further propagation of corrosion pits. This study shows that the amorphous alloy strip with high energy and high free volume content prepared by Twin-roll rolling method is prone to suffer from corrosion, whereas, the annealing below the crystallization temperature can reduce its free volume content and thus improve its corrosion performance.

Key words:  Zr-based amorphous      anneal      structural relaxation      nanocrystal      electrochemical property     
Received:  30 November 2020     
ZTFLH:  TG174  
Fund: Fundamental Research Funds for the Central Universities(N170708019)
Corresponding Authors:  YUAN Guo     E-mail:  yuanguoral@sina.com
About author:  YUAN Guo, E-mail: yuanguoral@sina.com

Cite this article: 

YAN Zhu, ZHANG Chenyang, WANG Lixin, YUAN Guo, ZHANG Yuanxiang, FANG Feng, WANG Yang, KANG Jian. Effect of Structural Stability on Electrochemical Corrosion Properties of Zr-based Amorphous Alloy. Journal of Chinese Society for Corrosion and protection, 2022, 42(1): 79-84.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.245     OR     https://www.jcscp.org/EN/Y2022/V42/I1/79

Fig.1  XRD patterns of as-cast and annealed samples of Zr55Cu30Al10Ni5
Fig.2  DSC curves of Zr55Cu30Al10Ni5 as-cast and annealed samples (heating rate is 20 K/min)
Fig.3  Relaxation enthalpy of Zr55Cu30Al10Ni5 as-cast and annealed samples before Tg point
Fig.4  Potentiodynamic polarization curves of Zr55Cu30Al10Ni5 as-cast and annealed samples in 3.5%NaCl solution
AlloyEcorr / mVIcorr / A·cm-2Epit / mVEpit-Ecorr / mV
As-cast-353 (±11)7.438×10-7 (±0.36)-143 (±17)210
Annealed / 653 K-332 (±2)5.743×10-7 (±0.21)-157 (±29)175
Annealed / 693 K-301 (±7)2.191×10-7 (±0.17)-212 (±34)89
Annealed / 723 K-287 (±16)9.823×10-8 (±0.42)-253 (±21)34
Table 1  Fitting results of polarization curves for Zr55Cu30Al10Ni5 as-cast and annealed amorphous alloys in 3.5%NaCl solution
Fig.5  EIS results of the Zr55Cu30Al10Ni5 as-cast and annealed amorphous alloys in 3.5%NaCl solution: (a) Nyquist plot, (b) Bode plot, (c) Phase plot
Fig.6  Equivalent circuit of Zr55Cu30Al10Ni5 amorphous alloy in 3.5%NaCl solution
AlloyRs / Ω·cm2Y0 / 10-5-1·cm-2·s-n)nRct / Ω·cm2
As-cast24.27 (±0.48)1.039 (±0.025)0.92385 (±0.0045)1.112 (±0.029) ×105
Annealed / 653 K17.31 (±0.39)0.437 (±0.010)0.91442 (±0.0037)1.930 (±0.043) ×105
Annealed / 693 K26.74 (±0.48)0.587 (±0.011)0.94333 (±0.0034)4.545 (±0.126) ×105
Annealed / 723 K27.07 (±0.47)0.322 (±0.049)0.90861 (±0.0026)8.002 (±0.187) ×105
Table 2  EIS fitting results of Zr55Cu30Al10Ni5 as-cast and annealed amorphous alloys in 3.5%NaCl solution
Fig.7  SEM images of Zr55Cu30Al10Ni5 as-cast and annealed samples corroded surface after polarization in 3.5%NaCl solution: (a) as-cast sample, (b) 653 K annealed sample, (c) 693 K annealed sample, (d) 723 K annealed sample
Fig.8  TEM images of Zr55Cu30Al10Ni5 as-cast (a, b) and 693 K annealed samples (c, d)
1 Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloys [J]. Acta Mater., 2011, 59: 2243
2 Han T K, Kim S J, Yang Y S, et al. Nanocrystallization and high tensile strength of amorphous Zr-Al-Ni-Cu-Ag alloys [J]. Met. Mater. Int., 2001, 7: 91
3 Sun Y T, Wang C, Lv Y M, et al. Recent progress of the glassy materials and physics [J]. Acta Phys. Sin., 2018, 67: 126101
孙奕韬, 王超, 吕玉苗等. 非晶材料与物理近期研究进展 [J]. 物理学报, 2018, 67: 126101
4 Kwon O J, Kim Y C, Kim K B, et al. Formation of amorphous phase in the binary Cu-Zr alloy system [J]. Met. Mater. Int., 2006, 12: 207
5 Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta Mater., 2000, 48: 279
6 Schroeder V, Gilbert C J, Ritchie R O. Comparison of the corrosion behavior of a bulk amorphous metal, Zr41.2Ti13.8Cu12.5Ni10Be22.5, with its crystallized form [J]. Scr. Mater., 1998, 38: 1481
7 Yang Z G, Wang T J, Wang G C, et al. Electrochemical property of a bulk Zr-based amorphous alloy [J]. Chin. J. Rare Met., 2004, 28: 25
杨志刚, 王铁军, 王高潮等. 大块锆基非晶合金电化学耐腐蚀行为的试验研究 [J]. 稀有金属, 2004, 28: 25
8 Shao G J, Qin X J. Electrochemical corrosion behaviors of ZrTiCuNiBe bulk amorphous alloy [J]. Met. Phys. Examinat. Test., 2002, (1): 34
邵光杰, 秦秀娟. ZrTiCuNiBe大块非晶合金腐蚀行为的电化学研究 [J]. 物理测试, 2002, (1): 34
9 Gebert A, Buchholz K, Leonhard A, et al. Investigations on the electrochemical behaviour of Zr-based bulk metallic glasses [J]. Mater. Sci. Eng., 1999, 267A: 294
10 Zander D, Köster U. Corrosion of amorphous and nanocrystalline Zr-based alloys [J]. Mater. Sci. Eng., 2004, 375-377A: 53
11 Scully J R, Gebert A, Payer J H. Corrosion and related mechanical properties of bulk metallic glasses [J]. J. Mater. Res., 2007, 22: 302
12 Mondal K, Murty B S, Chatterjee U K. Electrochemical behavior of multicomponent amorphous and nanocrystalline Zr-based alloys in different environments [J]. Corros. Sci., 2006, 48: 2212
13 Wang C, Zhang Q S, Jiang F, et al. Corrosion behavior of Zr55Al10Cu30Ni5 amorphous alloy in NaOH solution [J]. Rare Met. Mater Eng., 2003, 32: 814
王成, 张庆生, 江峰等. Zr55Al10Cu30Ni5非晶合金在NaOH溶液中的腐蚀行为 [J]. 稀有金属材料与工程, 2003, 32: 814
14 Qiu Z W J, Li Z K, Fu H M, et al. Corrosion mechanisms of Zr-based bulk metallic glass in NaF and NaCl solutions [J]. J. Mater. Sci. Technol., 2020, 46: 33
15 Tauseef A, Tariq N H, Akhter J I, et al. Corrosion behavior of Zr-Cu-Ni-Al bulk metallic glasses in chloride medium [J]. J. Alloy. Compd., 2010, 489: 596
16 Mudali U K, Baunack S, Eckert J, et al. Pitting corrosion of bulk glass-forming zirconium-based alloys [J]. J. Alloy. Compd., 2004, 377: 290
17 Jayaraj J, Gebert A, Schultz L. Passivation behaviour of structurally relaxed Zr48Cu36Ag8Al8 metallic glass [J]. J. Alloy. Compd., 2009, 479: 257
18 Zhang Z Y, Zhang J K, Wu J W, et al. Effects of annealing temperature on electrochemical properties of Zr56Cu19Ni11Al9Nb5 metallic glass [J]. Spec. Cast. Nonferrous Alloys, 2019, 39: 586
张志英, 张继康, 武俊伟等. 退火温度对Zr56Cu19Ni11Al9Nb5非晶合金电化学性能的影响 [J]. 特种铸造及有色合金, 2019, 39: 586
19 Hua N B, Liao Z L, Wang Q T, et al. Effects of crystallization on mechanical behavior and corrosion performance of a ductile Zr68Al8Ni8Cu16 bulk metallic glass [J]. J. Non-Cryst. Solids, 2020, 529: 119782
20 Zhang L, Wu Y, Feng S D, et al. Rejuvenated metallic glass strips produced via twin-roll casting [J]. J. Mater. Sci. Technol., 2020, 38: 73
21 Zhang C Y, Yuan G, Zhang Y X, et al. Zr55Cu30Al10Ni5 amorphous alloy sheets with large plasticity fabricated by twin-roll strip casting [J]. Mater. Sci. Eng., 2020, 794A: 139904
22 Van den Beukel A, Sietsma J. The glass transition as a free volume related kinetic phenomenon [J]. Acta Metall. Mater., 1990, 38: 383
23 Jiang W H, Jiang F, Green B A, et al. Electrochemical corrosion behavior of a Zr-based bulk-metallic glass [J]. Appl. Phys. Lett., 2007, 91: 041904
24 Lu H B, Zhang L C, Gebert A, et al. Pitting corrosion of Cu-Zr metallic glasses in hydrochloric acid solutions [J]. J. Alloy. Compd., 2008, 462: 60
[1] DAI Ting, GU Yanhong, GAO Hui, LIU Kailong, XIE Xiaohui, JIAO Xiangdong. Electrochemical Performance of Underwater Friction Stud Welding Joint in CO2 Saturated NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] BAI Haitao, YANG Min, DONG Xiaowei, MA Yun, WANG Rui. Research Progress on CO2 Corrosion Product Scales of Carbon Steels[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[3] CHEN Jiachen,WANG Zhongwei,QIAO Lijie,YAN Yu. Interaction between Friction-wear and Corrosion in Special Environment[J]. 中国腐蚀与防护学报, 2019, 39(5): 404-410.
[4] Hao CHEN,Qing CHEN,Li XIN,Long SHI,Shenglong ZHU,Fuhui WANG. Preparation and High Temperature Corrosion Behavior of Aluminized Nanocrystalline Coating on DD98M Alloy[J]. 中国腐蚀与防护学报, 2019, 39(1): 59-67.
[5] Zhiying ZHANG, Jianan TANG, Jie YU, Xudong WANG, Luochao HUANG, Junwen ZHOU, Hao TANG, Jikang ZHANG, Yatao CHEN, Dongpeng CHENG. Corrosion Behavior of Cu-based Metallic Glass Composites in NaCl Solution[J]. 中国腐蚀与防护学报, 2018, 38(5): 478-486.
[6] Yao CHEN,Honghua ZHANG,Ganlan YANG,Junhuai XIANG. Influence of Heat Treatment on Microstructure of Composite Coatings of FeAl-Cr3C2[J]. 中国腐蚀与防护学报, 2017, 37(1): 58-62.
[7] CUI Yuhui, HU Rui, ZHANG Tiebang, LI Jian, KOU Hongchao, LI Jinshan. MICROSTRUCTURE OF Fe-BASED AMORPHOUS AND NANOCRYSTALLINE COATINGS AND ITS CORROSION RESISTANCE IN H2O2 SOLUTION[J]. 中国腐蚀与防护学报, 2012, 32(4): 317-321.
[8] YANG Qingsong, LI Chun, WANG Jie, YANG Zhongnian, ZHANG Zhao, ZHANG Jianqing. PREPARATION OF CERIA THIN FILMS BY ANODIC ELECTRODEPOSITION[J]. 中国腐蚀与防护学报, 2012, 32(1): 34-38.
[9] LI Mingfei1,2,3, PENG Xiao2, WANG Fuhui1,2. HIGH TEMPERATURE OXIDATION BEHAVIOR OF A NOVEL FINE-GRAINED Ni3Al COATING[J]. 中国腐蚀与防护学报, 2011, 31(6): 414-418.
[10] SHEN Changbin, YANG Huaiyu, WANG Shenggang, LONG Kang, WANG Fuhui. CORROSIVE EFFECT BY ALLYLTHIOUREA OF BULK NANOCRYSTALLINE INGOT IRON IN AMBIENT DILUTED ACIDIC SULPHATE SOLUTION[J]. 中国腐蚀与防护学报, 2010, 30(6): 433-436.
[11] LIANG Shuquan, ZHANG Yong, GUAN Dikai, TAN Xiaoping, TANG Yan, MAO Zhiwei. EFFECT OF ROLLING TEMPERATURE ON MICROSTRUCTURE AND PERFORMANCES OF Al-Mg-Sn-Bi-Ga-In ALLOY ANODE[J]. 中国腐蚀与防护学报, 2010, 30(4): 295-299.
[12] . CORROSION BEHAVIOR OF NANOCRYSTALLIZED BULK 304 STAINLESS STEEL II THE RESEARCH OF PROTECTION OF THE PASSIVE FILM[J]. 中国腐蚀与防护学报, 2007, 27(3): 142-146 .
[13] . CORROSION BEHAVIOR OF NANOCRYSTALLIZED BULK 304 STAINLESS STEELI. THE RESEARCH ON ANTI-CHLORIDE ION ATTACK OF THE PASSIVE FILM[J]. 中国腐蚀与防护学报, 2007, 27(2): 80-83 .
[14] Haibo Lu. EFFECT OF NANOCRYSTALLIZATION ONTHE CORROSION BEHAVIOR OF Cu-20Zr ALLOY[J]. 中国腐蚀与防护学报, 2006, 26(3): 171-175 .
[15] Haibo Lu; Ying Li; Fuhui Wang. Corrosion Characteristics of Cu-20Zr alloy in Hydrochloric Acid Solution[J]. 中国腐蚀与防护学报, 2006, 26(2): 75-79 .
No Suggested Reading articles found!