Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (1): 169-174    DOI: 10.11902/1005.4537.2021.015
Current Issue | Archive | Adv Search |
Analysis and Prediction of Nonmetallic Inclusions and Their Effect on Hydrogen Induced Cracking Behavior of X65 Acid-resistant Pipeline Steel
ZHU Yanshan, ZHANG Jiming(), WU Fengjuan, QU Jinbo
Institute of Research of Iron and Steel (IRIS), Sha-steel, Zhangjiagang 215625, China
Download:  HTML  PDF(6141KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Large non-metallic inclusions and their effect on the hydrogen induced cracking behavior (HIC) of the X65 acid-resistant pipeline steel were investigated by means of metallography and scanning electron microscopy (SEM). While the maximum size of non-metallic inclusions in the steels of different volume was predicted by extreme value statistics (SEV). According to the predicted inclusion of large size, the possible hydrogen induced cracks (HICs) evoked by the large inclusions were estimated for the X65 pipeline steel. The results show that the large non-metallic inclusions in X65 pipeline steel increase with the increase of the steel volume, and the predicted maximum inclusion size is consistent with the results of metallographic observation. The estimated size of HICs evoked by the inclusion of predicted maximum size is consistent with the crack length detected by HIC test of X65 pipeline steel.

Key words:  anti-resistant pipeline steel      non-metallic inclusion      hydrogen induced crack      statistics of extreme value     
Received:  18 January 2021     
ZTFLH:  TG172  
Fund: Jiangsu Gusu International Cooperation Project and Zhangjiagang Innovation Leading Talent Project
Corresponding Authors:  ZHANG Jiming     E-mail:  Jiming_zhang@126.com

Cite this article: 

ZHU Yanshan, ZHANG Jiming, WU Fengjuan, QU Jinbo. Analysis and Prediction of Nonmetallic Inclusions and Their Effect on Hydrogen Induced Cracking Behavior of X65 Acid-resistant Pipeline Steel. Journal of Chinese Society for Corrosion and protection, 2022, 42(1): 169-174.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.015     OR     https://www.jcscp.org/EN/Y2022/V42/I1/169

Fig.1  Sizes and shapes of the inclusions tested on the surfaces of twelve X65 steel samples show 12 maximum size inclusions as the order from the smallest to the largest
Fig.2  Shapes and dimensions of maximum HIC cracks and nonmetallic inclusions on the transversal surfaces of twelve samples after HIC testing: (a) Lin: 7.5 μm, LHIC: 15.5 μm, (b) Lin: 33.5 μm, LHIC: 47.1 μm, (c) Lin: 4μm, LHIC: 78.3 μm, (d) Lin: 35 μm, LHIC: 50.8 μm, (e) Lin: 17 μm, LHIC: 28 μm, (f) Lin: 26 μm, LHIC: 42 μm, (g) Lin: 36 μm, LHIC: 66.7 μm, (h) Lin:46 μm, LHIC: 90 μm, (i) Lin: 41.7 μm, LHIC: 96 μm, (j) Lin: 27 μm, LHIC: 76 μm, (k) Lin: 37 μm, LHIC: 55.2 μm, (l) Lin:11.8 μm, LHIC: 16 μm
No.LHIC / μmLin / μmLHIC / Lin
115.57.52.01
216.011.81.36
328.017.01.63
442.026.01.62
547.133.51.41
650.835.01.45
755.237.01.49
866.736.01.83
972.027.02.67
1078.340.01.96
1190.046.01.96
1296.041.72.30
Table 1  Lengths of maximum HIC cracks and corresponding inclusions on the transversal surfaces of twelve samples after HIC testing
Fig.3  Comparison between predicted and detected values for the sizes of maximum inclusions (a) and maximum HIC cracks (b) in X65 pipeline steel samples with different volumes
Fig.4  UT morphology of HIC crack with maximum size
Fig.5  Schematic diagram of formation of HIC crack induced by nonmetallic inclusion[31,32]
1 Yang W, Cao J, Wang X H, et al. Investigation on non-metallic inclusions in LCAK steel produced by BOF-LF-FTSC production route [J]. J. Iron Steel. Res. Int., 2011, 18: 6
2 Xue Z L, Li Z B, Zhang J W. Evaluation method for steel cleanliness [J]. J. Iron Steel. Res., 2003, 15(1): 62
薛正良, 李正邦, 张家雯. 钢的纯净度的评价方法 [J]. 钢铁研究学报, 2003, 15(1): 62
3 Yue Q, Chen H H, Yao C H, et al. Review of collision and growth on non-metallic inclusion in steel [J]. J. Iron Steel. Res., 2012, 24(9): 1
岳强, 陈怀昊, 姚成虎等. 钢液中非金属夹杂物碰撞、长大的研究进展 [J]. 钢铁研究学报, 2012, 24(9): 1
4 Cai S Q, Teng M, Li J F, et al. Effect of non-metallic inclusions on cutting character in Ca and Ca-S free machining steels [J]. J. Iron Steel. Res, 2000, 12(2): 54
蔡淑卿, 滕梅, 李吉夫等. 非金属夹杂物对钙系与钙硫系易切削钢切削性能的影响 [J]. 钢铁研究学报, 2000, 12(2): 54
5 Zhang C, Xia Z X, Yang Z G, et al. Influence of prior austenite deformation and non-metallic inclusions on ferrite Formation in low-carbon steels [J]. J. Iron Steel. Res. Int., 2010, 17: 36
6 da Costa e Silva A L V. The effects of non-metallic inclusions on properties relevant to the performance of steel in structural and mechanical applications [J]. J. Mater. Res. Technol., 2019, 8: 2408
7 Henschel S, Dudczig S, Krüger L, et al. Effect of non-metallic inclusions and shrinkage cavities on the dynamic fracture toughness of a high-strength G42CrMo4 cast steel [J]. Procedia Struct. Integrity, 2016, 2: 358
8 Zhang J M, Ji L K, Bao D J, et al. Gigacycle fatigue behavior of 1800 MPa grade high strength spring steel for automobile lightweight [J]. J. Iron Steel. Res. Int., 2014, 21: 614
9 Zhang J M, Yang Z G, Li S X, et al. Ultra high cycle fatigue behavior of automotive high strength spring steels 54SiCrV6 and 54SiCr6 [J]. Acta Metall. Sin., 2006, 42: 259
张继明, 杨振国, 李守新等. 汽车用高强度弹簧钢54SiCrV6和54SiCr6的超高周疲劳行为 [J]. 金属学报, 2006, 42: 259
10 Yang Z G, Zhang J M, LI S X, et al. On the critical inclusion size of high strength steels under ultra-high cycle fatigue [J]. Mater. Sci. Eng., 2006, 427A: 167
11 Zhang J M. Very high cycle fatigue behavior of X80 acicular ferrite line pipe [J]. Trans. Mater. Heat Treat., 2020, 41(4): 144
张继明. X80针状铁素体管线管的超高周疲劳行为 [J]. 材料热处理学报, 2020, 41(4): 144
12 Atkinson H V, Shi G. Characterization of inclusions in clean steels: a review including the statistics of extremes methods [J]. Prog. Mater. Sci., 2003, 48: 457
13 Jin T Y, Liu Z Y, Cheng Y F. Effect of non-metallic inclusions on hydrogen-induced cracking of API5L X100 steel [J]. Int. J. Hydrogen Energy, 2010, 35: 8014
14 Mohtadi-Bonab M A, Eskandari M. A focus on different factors affecting hydrogen induced cracking in oil and natural gas pipeline steel [J]. Eng. Fail. Anal., 2017, 79: 351
15 Zhang J M, Zhu Y S, Shao C J, et al. Crystallographic characterization of hydrogen induced cracking in an X65MS acid-resistant pipeline steel [J]. J. Chin. Electron Microsc. Soc., 2020, 39: 261
张继明, 朱延山, 邵春娟等. X65抗酸管线钢氢致开裂的晶体学表征 [J]. 电子显微学报, 2020, 39: 261
16 Roffey P, Davies E H. The generation of corrosion under insulation and stress corrosion cracking due to sulphide stress cracking in an austenitic stainless steel hydrocarbon gas pipeline [J]. Eng. Fail. Anal., 2014, 44: 148
17 Murakami Y, Usuki H. Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. II: fatigue limit evaluation based on statistics for extreme values of inclusion size [J]. Int. J. Fatigue, 1989, 11: 299
18 Xue H B, Cheng Y F. Characterization of inclusions of X80 pipeline steel and its correlation with hydrogen-induced cracking [J]. Corros. Sci., 2011, 53: 1201
19 Dong C F, Liu Z Y, Li X G, et al. Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking [J]. Int. J. Hydrogen Energy, 2009, 34: 9879
20 Zhang J M, Li S X, Yang Z G, et al. Influence of inclusion size on fatigue behavior of high strength steels in the gigacycle fatigue regime [J]. Int. J. Fatigue, 2007, 29: 765
21 Zhang J M, Zhang J F, Yang Z G, et al. Estimation of maximum inclusion size and fatigue strength in high-strength ADF1 steel [J]. Mater. Sci. Eng., 2005, 394A: 126
22 Kholodnyi A A, Matrosov Y I, Matrosov M Y, et al. Effect of carbon and manganese on low-carbon pipe steel hydrogen-induced cracking resistance [J]. Metallurgist, 2016, 60: 54
23 Nayak S S, Misra R D K, Hartmann J, et al. Microstructure and properties of low manganese and niobium containing HIC pipeline steel [J]. Mater. Sci. Eng., 2008, 494A: 456
24 Domizzi G, Anteri G, Ovejero-Garcı́a J. Influence of sulphur content and inclusion distribution on the hydrogen induced blister cracking in pressure vessel and pipeline steels [J]. Corros. Sci., 2001, 43: 325
25 Peng Z X, Liu J, Huang F, et al. Comparative study of non-metallic inclusions on the critical size for HIC initiation and its influence on hydrogen trapping [J]. Int. J. Hydrogen Energy, 2020, 45: 12616
26 Du X S, Cao W B, Wang C D, et al. Effect of microstructures and inclusions on hydrogen-induced cracking and blistering of A537 steel [J]. Mater. Sci. Eng., 2015, 642A: 181
27 Koseki T, Kato H, Tsutsumi M, et al. Ferrite transformation from oxide-steel interface in HAZ-simulated C-Mn steel [J]. Int. J. Mater. Res., 2008, 99: 347
28 Chu W Y, Qiao L J, Li J X, et al. Hydrogen Embrittlement and Stress Corrosion Cracking [M]. Beijing: Science Press, 2013: 6
褚武扬, 乔利杰, 李金许等. 氢脆和应力腐蚀—基础部分 [M]. 北京: 科学出版社, 2013: 6
29 Sezgin J G, Bosch C, Montouchet A, et al. Modelling of hydrogen induced pressurization of internal cavities [J]. Int. J. Hydrogen Energy, 2017, 42: 15403
30 Chen L, Xiong X L, Tao X, et al. Effect of dislocation cell walls on hydrogen adsorption, hydrogen trapping and hydrogen embrittlement resistance [J]. Corros. Sci., 2020, 166: 108428
31 Tao X, Lv G C, Kou J W, et al. Synchrotron X-ray Laue diffraction study of hydrogen-induced blisters on iron grain boundaries [J]. Scr. Mater., 2019, 169: 82
32 Fu L, Fang H Y. Formation criterion of hydrogen-induced cracking in steel based on fracture mechanics [J]. Metals, 2018, 8: 940
[1] Qiang GUO, Changfeng CHEN, Shihan LI, Haobo YU, Helin LI. Cracking Behavior of Cold-welding Layer on A350 LF2 Steel in H2S Environment[J]. 中国腐蚀与防护学报, 2018, 38(2): 167-173.
[2] WANG Bin, ZHOU Cui, LI Liangjun, HU Hongmei, ZHU Jiaxiang. Resistance to Hydrogen Induced Corrosion Cracking of Weld Joint of X100 Pipeline Steel[J]. 中国腐蚀与防护学报, 2014, 34(3): 237-242.
[3] ZHEN Fan; LIU Jing; HUANG Feng; CHENG Jihao; LI Cuiling;GUO Bin; XU Jinqia. EFFECT OF THE NONMETALLIC INCLUSIONS ON THE HIC BEHAVIOR OF X120 PIPELINE STEEL[J]. 中国腐蚀与防护学报, 2010, 30(2): 145-149.
[4] . HYDROGEN SENSOR WITH PALLADIUM ALLOY FILM FOR MONITORING THE RATE OF HYDROGEN PERMEATION IN H2S CORROSION[J]. 中国腐蚀与防护学报, 2005, 25(5): 280-284 .
[5] . FRACTAL STUDY DEVELOPMENTS OF HYDROGEN INDUCED CRACKIN G[J]. 中国腐蚀与防护学报, 2001, 21(3): 188-192 .
[6] ;. FRACTAL MODEL OF HYDROGEN INDUCED CRACKING[J]. 中国腐蚀与防护学报, 2001, 21(2): 106-111 .
[7] Yanbin Wang; Sheng Wang. THE EFFECTS OF PLASTIC DEFORMATION ON HYDROGEN INDUCED CRACKING[J]. 中国腐蚀与防护学报, 2000, 20(4): 248-252 .
[8] HUANG Changhe LI Jinxu WANG Yanbin CHU Wuyang (University of Science and Technology Beijing 100083)MEI Dongsheng YU Mengwen JI Kebin (Panzhihua Iron and steel Co. Panzhihua 710076). HYDROGEN DAMAGE AND HYDROGEN-INDUCED CRACKING FOR RAIL STEEL[J]. 中国腐蚀与防护学报, 1997, 17(2): 129-134.
[9] Cheng Yufeng;Du Yuanlong(Corrosion Science Laboratory;Institute of Corrosion and Protection of Metals;Chinese Academy of Sciences). FRACTURE MECHANISM OF MILD STEEL IN HYDROCHLORIC ACID CONTAINING Fe~(3+)[J]. 中国腐蚀与防护学报, 1995, 15(2): 81-86.
No Suggested Reading articles found!