Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (3): 289-294    DOI: 10.11902/1005.4537.2019.185
Current Issue | Archive | Adv Search |
Electrochemical Properties of Graphene Modified Mixed Metal Oxide Anodes of Ti/IrTaSnSb-G in NaCl Solutions at Low Temperature
WANG Tingyong1,2(), DONG Ruyi2, XU Shi2, WANG Hui2
1 Luoyang Ship Material Research Institute, Luoyang 471000, China
2 Sunrui Marine Environment Engineering Co. , Ltd. , Qingdao 266101, China
Download:  HTML  PDF(3347KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Graphene-modified mixed metal oxide anodes of Ti/IrTaSnSb-G were prepared by thermal decomposition, and then the electrochemical performance of the anodes in NaCl solutions was examined via electrochemical workshop type PAR2273 and SEM equipped with EDS in terms of the effect of graphene on the performance of anodes. The results show that the graphene promotes the segregation of IrO2, which then resulted in the formation of dendritic structure on the surface of the anodes, in the meanwhile, secondary crystallization phenomenon could induce the formation of nano-needle structure of IrO2, which increases the active surface areas and improves subsequently the electrocatalytic activity of the anodes. Besides, the electrolysis current efficiency of the electrode with 0.6 g/L graphene increases 9% in 3.5%NaCl solution at 5 ℃ and 13% in 1.5%NaCl solution at 15 ℃ respectively.

Key words:  graphene      oxide anode      electrochemical activity      current efficiency     
Received:  20 October 2019     
ZTFLH:  O646  
Corresponding Authors:  WANG Tingyong     E-mail:  wangty@sunrui.net

Cite this article: 

WANG Tingyong, DONG Ruyi, XU Shi, WANG Hui. Electrochemical Properties of Graphene Modified Mixed Metal Oxide Anodes of Ti/IrTaSnSb-G in NaCl Solutions at Low Temperature. Journal of Chinese Society for Corrosion and protection, 2020, 40(3): 289-294.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.185     OR     https://www.jcscp.org/EN/Y2020/V40/I3/289

Fig.1  FTIR spectra of the Ti/IrTaSnSb-G anodes
Fig.2  FESEM micrographs of the Ti/IrTaSnSb-G anodes without graphene (a, c) and with graphene (b, d)
Graghene content / g·L-1IrTaSnSb
010.965.903.763.13
0.28.994.593.502.11
0.48.693.793.092.13
0.68.673.362.971.86
0.89.094.262.791.96
1.010.034.332.642.12
Table 1  Surface compositions of Ti/IrTaSnSb-G anodes with different graphene contents (mol fraction / %)
Fig.3  Cyclic voltammorgrams of Ti/IrTaSnSb-G anodes with different contents of graphene
Fig.4  Voltammetric charges of Ti/IrTaSnSb-G anodes with different contents of graphene
Fig.5  Porlarization curves of Ti/IrTaSnSb-G anodes with different contents of graphene in 1.5%NaCl solution at 15 ℃
Fig.7  Nyquist plots of Ti/IrTaSnSb-G anodes with different contents of grapheme
Fig.6  Equivalent resistance of Ti/IrTaSnSb-G electrode in 1.5%NaCl solution
Graphene content / g·L-1Rs / Ω·cm2Qf / Ω-1·cm-2·s-nRf / Ω·cm2n1Qdl / Ω-1·cm-2·s-nRct / Ω·cm2n2
03.1171.572×10-24.0180.69785.028×10-115.9050.6707
0.23.6815.343×10-22.9120.71936.808×10-110.3010.6941
0.43.5411.071×10-12.7180.67747.228×10-19.9050.6829
0.63.2832.343×10-12.3120.69598.808×10-18.3010.7342
0.83.7761.834×10-12.2660.71717.906×10-18.7280.6547
1.03.1741.046×10-12.2620.72587.863×10-19.4420.6314
Table 2  Impedance parameters of the Ti/IrTaSnSb-G anodes with different contents
Fig.8  Current efficiency of the Ti/IrTaSnSb-G anodes in 3.5%NaCl solution at 5 ℃ and 1.5%NaCl solution at 15℃
Fig.9  Accelerated lifetime of the Ti/IrTaSnSb-G anodes in 0.5 mol·L-1 H2SO4 solution at 40 ℃
[1] Stehouwer P P, Buma A, Peperzak L. A comparison of six different ballast water treatment systems based on UV radiation, electrochlorination and chlorine dioxide [J]. Environ. Technol., 2015, 36: 2094
[2] Marshall A T, Haverkamp R G. Nanoparticles of IrO2 or Sb-SnO2 increase the performance of iridium oxide DSA electrodes [J]. J. Mater. Sci., 2012, 47: 1135
doi: 10.1007/s10853-011-5958-x
[3] Kaur P, Kushwaha J P, Sangal V K. Evaluation and disposability study of actual textile wastewater treatment by electro-oxidation method using Ti/RuO2 anode [J]. Process Saf. Environ. Prot., 2017, 111: 13
[4] Trasatti S. Electrocatalysis: Understanding the success of DSA® [J]. Electrochim. Acta, 2000, 45: 2377
[5] Ardizzone S, Bianchi C L, Cappelletti G, et al. Composite ternary SnO2-IrO2-Ta2O5 oxide electrocatalysts [J]. J. Electroanal. Chem., 2006, 589: 160
doi: 10.1016/j.jelechem.2006.02.004
[6] Wei Z Q, Wang D B, Kim S, et al. Nanoscale tunable reduction of graphene oxide for graphene electronics [J]. Science, 2010, 328: 1373
doi: 10.1126/science.1188119
[7] Kumar G V, Agarwal S, Asif M, et al. Application of response surface methodology to optimize the adsorption performance of a magnetic graphene oxide nanocomposite adsorbent for removal of methadone from the environment [J]. J. Colloid Interface Sci., 2017, 497: 193
doi: 10.1016/j.jcis.2017.03.006
[8] Pocrifka L A, Gonçalves C, Grossi P, et al. Development of RuO2-TiO2 (70-30) mol% for pH measurements [J]. Sens. Actuator. B-Chem., 2006, 113: 1012
doi: 10.1016/j.snb.2005.03.087
[9] Hu J M, Sun X J, Hou Y Y, et al. Degradation characteristics of IrO2-type DSA® in methanol aqueous solutions [J]. Electrochim. Acta, 2008, 53: 3127
doi: 10.1016/j.electacta.2007.11.045
[10] Xu L K, Xin Y L, Wang J T. A comparative study on IrO2-Ta2O5 coated titanium electrodes prepared with different methods [J]. Electrochim. Acta, 2009, 54: 1820
doi: 10.1016/j.electacta.2008.10.004
[11] Ge B Y, Wang H T, Xu S, et al. Property of Ti/IrO2-Ta2O5-SnO2-Sb2O5 oxide anodes for ballast water treatment system [J]. Mater. Prot., 2016, 49(4): 10
(葛宝玉, 王海涛, 许实等. 船舶压载水处理用Ti/IrO2-Ta2O5-SnO2-Sb2O5氧化物阳极的性能 [J]. 材料保护, 2016, 49(4): 10)
[12] Huang Y T, Peng Q. Progress in the study of the Ti-based metal oxide anodes [J]. Total Corros. Control, 2006, 20(1): 10
(黄运涛, 彭乔. 钛基金属氧化物阳极的研究进展 [J]. 全面腐蚀控制, 2006, 20(1): 10)
[13] Xu S, Fu H T, Liu G Z, et al. Research on the influence of seawater temperature on the efficiency of production of chlorine by electrolysis [J]. J. Chem. Ind. Eng., 2013, 34(5): 57
(许实, 付洪田, 刘光洲等. 海水温度对电解制氯效率的影响研究 [J]. 化学工业与工程技术, 2013, 34(5): 57)
[14] Ning H L, Xin Y L, Xu L K, et al. Properties of IrO2-Ta2O5 coated titanium anodes modified with graphene [J]. Rare Met. Mater. Eng., 2016, 23: 946
(宁慧利, 辛永磊, 许立坤等. 含石墨烯IrO2-Ta2O5涂层钛阳极性能改进研究 [J]. 稀有金属材料与工程, 2016, 23: 946)
[15] Trieu V, Schley B, Natter H, et al. RuO2-based anodes with tailored surface morphology for improved chlorine electro-activity [J]. Electrochim. Acta, 2012, 78: 188
doi: 10.1016/j.electacta.2012.05.122
[16] Lačnjevac U C, Radmilović V V, Radmilović V R, et al. RuOx nanoparticles deposited on TiO2 nanotube arrays by ion-exchange method as electrocatalysts for the hydrogen evolution reaction in acid solution [J]. Electrochim. Acta, 2015, 168: 178
doi: 10.1016/j.electacta.2015.04.012
[17] Herrada R A, Medel A, Manríquez F, et al. Preparation of IrO2-Ta2O5|Ti electrodes by immersion,painting and electrophoretic deposition for the electrochemical removal of hydrocarbons from water [J]. J. Hazard. Mater., 2016, 319: 102
doi: 10.1016/j.jhazmat.2016.02.076
[18] Karlsson R K B, Hansen H A, Bligaard T, et al. Ti atoms in Ru0.3Ti0.7O2 mixed oxides form active and selective sites for electrochemical chlorine evolution [J]. Electrochim. Acta, 2014, 146: 733
doi: 10.1016/j.electacta.2014.09.056
[19] Hsiao H Y, Chuang M C. Eliminating evolved oxygen through an electro-flocculation efficiently prompts stability and catalytic kinetics of an IrOx·nH2O colloidal nanostructured electrode for water oxidation [J]. Electrochim. Acta, 2014, 137: 190
doi: 10.1016/j.electacta.2014.06.003
[20] Rosestolato D, Fregoni J, Ferro S, et al. Influence of the nature of the electrode material and process variables on the kinetics of the chlorine evolution reaction. The case of IrO2-based electrocatalysts [J]. Electrochim. Acta, 2014, 139: 180
doi: 10.1016/j.electacta.2014.07.037
[21] Sun R X, Xu H B, Wan N F, et al. Syntheses of IrOx-TiO2 Nano-powers from TiN via impregnation-thermal decomposition method and its characterization [J]. Chem. J. Chin. Univ., 2007, 28: 904
(孙仁兴, 徐海波, 万年坊等. TiN浸渍-热分解法制备IrOx-TiO2粉体催化剂及其表征 [J]. 高等学校化学学报, 2007, 28: 904)
[22] Xu H B, Lu Y H, Li C H, et al. A novel IrO2 electrode with iridium-titanium oxideinterlayers from a mixture of TiN nanoparticle and H2IrCl6 solution [J]. J. Appl. Electrochem., 2010, 40: 719
doi: 10.1007/s10800-009-0049-2
[23] Wang Q, Wang R, Xu H B, et al. Preparation and electrocatalytic properties of Ir0.08Ti0.92O2 and Pt/Ir0.08Ti0.92O2 [J]. Chem. J. Chin. Univ., 2014, 35: 1962
(王强, 王锐, 徐海波. Ir0.08Ti0.92O2及其载Pt催化剂的制备与电催化性能 [J]. 高等学校化学学报, 2014, 35: 1962)
doi: 10.7503/cjcu20140209
[24] Hu J Z, Xu H B, Lu Y H, et al. Ti/IrO2-coated electrode with iridium-titanium oxide interlayer by TiN Nano-particle oxidation [J]. Chin. J. Catal., 2008, 29: 1253
(胡杰珍, 徐海波, 芦永红等. 纳米TiN粉体氧化制备铱钛氧化物为中间层的钛基氧化铱电极 [J]. 催化学报, 2008, 29: 1253)
[25] Xu H B, Lu Y H, Li C H, et al. A novel IrO2 electrode with iridium-titanium oxide interlayers from a mixture of TiN nanoparticle and H2IrCl6 solution [J]. J. Appl. Electrochem., 2010, 40: 719
doi: 10.1007/s10800-009-0049-2
[26] Cestarolli D T, De Andrade A R. Electrochemical and morphological properties of Ti/Ru0.3Pb0.7-xTixO2-coated electrodes [J]. Electrochim. Acta, 2003, 48: 4137
doi: 10.1016/S0013-4686(03)00581-4
[27] Chen D, Tang L H, Li J H. Graphene-based materials in electrochemistry [J]. Chem. Soc. Rev., 2010, 39: 3157
doi: 10.1039/b923596e
[1] CAO Jingyi, WANG Zhiqiao, LI Liang, MENG Fandi, LIU Li, WANG Fuhui. Failure Mechanism of Organic Coating with Modified Graphene Under Simulated Deep-sea Alternating Hydrostatic Pressure[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
[2] Jianfeng WEI, Hongtian FU, Tingyong WANG, Shi XU, Hui WANG, Haitao WANG. Effect of Sintering Temperature on Properties of Graphene-containing Ti/IrTaSnSb-G Metal Oxide Anodes[J]. 中国腐蚀与防护学报, 2018, 38(3): 248-254.
[3] ZHAO Guoqiang, WEI Yinghua, LI Jing. Current Efficiency and Corrosion Mechanism of Al-Zn-In Sacrificial Anode at Different Current Densities[J]. 中国腐蚀与防护学报, 2015, 35(1): 69-74.
[4] HOU Juncai, LIANG Guojun, QIAO Jinhua, ZHANG Qiumei. LOW Mn CONTENT MAGNISIUM SACRIFICIAL ANODE[J]. 中国腐蚀与防护学报, 2012, 32(5): 403-406.
[5] LI Weili, YAN Yonggui, CHEN Guang, MA Li. EFFECT OF ALLOY ELEMENTS ON ELECTROCHEMICAL PERFORMANCE OF ALUMINUM SACRIFICIAL ANODE[J]. 中国腐蚀与防护学报, 2012, 32(2): 127-132.
[6] HOU Juncai, ZHANG Qiumei. CURRENT STATUS OF HIGH POTENTIAL MAGNESIUM SACRIFICIAL ANODES[J]. 中国腐蚀与防护学报, 2011, 31(2): 81-85.
[7] . EFFECT OF MAGNESIUM ON MICROSTRUCTURE ANDPERFORMANCE OF CONTAINING RE ALUMINUM ANODE[J]. 中国腐蚀与防护学报, 2001, 21(4): 220-224 .
No Suggested Reading articles found!