Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2012, Vol. 32 Issue (6): 478-484    DOI:
Current Issue | Archive | Adv Search |
EFFECTS OF Sb ADDITION ON CORROSION PROPERTIES OF Mg-5Al-2Sr ALLOY
LIU Zili1, ZHU Xiaochun1, ZHOU Guibin1, LI Jian2
1. College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016
2. Jiangsu Favour Automotive New Stuff Sci-Tech Co., Ltd, Changshu 215542
Download:  PDF(1526KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Corrosion weight loss, polarization techniques, electrochemical impedance spectroscopy(EIS) and corrosion morphology were used to estimate the impact of Sb addition on corrosion properties of Mg-5Al-2Sr alloys in 3.5% NaCl solution. Experimental results show that the initial corrosion types of Mg-5Al-2Sr-xSb(x=0, 0.3, 0.6, 1.0) alloy in 3.5% NaCl solution is pitting corrosion. Pitting originated in massive ternary τ phase and granular SbSr2 phase. The larger amount and the bigger size of these phases corresponds to the poorer resistance. Mesh distribution Al4Sr phase can become an effective barrier of corrosion. Adding 0.3% Sb not only refines the α-Mg matrix of Mg-5Al-2Sr alloy, but also promotes the formation of Al4Sr phase which distributed more in network. The corrosion potential of the alloy shifts positive obviously, the corrosion current density and corrosion rate reduces, thus, the corrosion resistance of the alloy is improved.

Key words:  Mg-5Al-2Sr      Sb      corrosion property     
Received:  26 December 2011     
ZTFLH:  TG249.6  
Corresponding Authors:  LIU Zili     E-mail:  zililiu@sohu.com

Cite this article: 

LIU Zili, ZHU Xiaochun, ZHOU Guibin, LI Jian. EFFECTS OF Sb ADDITION ON CORROSION PROPERTIES OF Mg-5Al-2Sr ALLOY. Journal of Chinese Society for Corrosion and protection, 2012, 32(6): 478-484.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2012/V32/I6/478

 


[1] Baril E, Labelle P, Pekguleryuz M O. Elevated temperature Mg-Al-Sr: Creep resistance, mechanical properties, and microstructure[J]. JOM., 2003, 55(11): 34-39

[2] L’Esp’erance G, Plamondon P, Kunst M, et al. Characterization of intermetallics in Mg-Al-Sr AJ62 alloys[J]. Intermetallics. 2010, 18(1): 1-7

[3] Hou J C, Guan S K, Ren C X, et al. Effect of small addition of strontium on microstructure and electrochemical performance of Mg-Mn sacrificial anode[J]. J. Chin. Soc. Corros. Prot., 2006, 26(3): 166-170

(侯军才, 关绍康, 任晨星等. 微量锶对镁锰牺牲阳极显微组织和电化学性能的影响[J]. 中国腐蚀与防护学报, 2006, 26(3): 166-170)

[4] Trojanov Z, Drozd Z, Luk P, et al. Mechanical properties of a squeeze cast Mg-Al-Sr alloy[J]. Adv. Mater. Sci. Eng., 2008, 29(2): 97-104

[5] Aljarrah M, Parvez M A, Li J, et al. Microstructural characterization of Mg-Al-Sr alloys[J]. Sci. Technol. Adv. Mater., 2007, 8(4): 237-248

[6] Bai J, Sun Y S, Xue F, et al. Effect of extrusion on microstructures, and mechanical and creep properties of Mg-Al-Sr and Mg-Al-Sr-Ca alloys [J]. Scr. Mater., 2006, 55(12): 1163-1166

[7] Bai J, Sun Y S, Xue F, et al. Influence of annealing on microstructures, mechanical and creep properties of Mg-4Al-2Sr alloy[J]. Mater. Sci. Technol., 2006, 22(10): 1208-1212

[8] Cao H B, Zhu J, Zhang C, et al. Experimental investigation and thermodynamic modelling of the Mg-Al-rich region of the Mg-Al-Sr system[J]. Int. J. Mater. Res., 2006, 97(4): 422-428

[9] Zhao P, Wang Q, Zhai C, et al. Tensile and compressive creep behavior of coarse-grained Mg-Al-Sr castings[J]. Mater. Sci. Forum., BeiJing: 2006, 546-549: 171-174

[10] Parvez M A, Medraj M, Essadiqi E, et al. Experimental study of the ternary magnesium-aluminium-strontium system[J]. J. Alloys Compd., 2005, 402(1-2): 170-185

[11] Czerwinski F, Zielinska-Lipiec A. The microstructure evolution during semisolid molding of a creep-resistant Mg-5Al-2Sr alloy[J]. Acta Mater., 2005, 53(12): 3433-3444

[12] Pekguleryuz M O, Baril E, Labelle P, et al. Creep resistant Mg-Al-Sr alloys[J]. J. Adv. Mater., 2003, 35(3): 32-38

[13] Pekguleryuz M O, Baril E. Development of creep resistant Mg-Al-Sr alloys[J]. JOM., 2001: 119-125

[14] Kl uting M L C. The new BMW inline six-cylinder composite Mg/Al crankcase[A]. IMA 62nd Annual World Magnesium Conference[C]. Berlin, 2005: 51-60

[15] Zhu X C, Liu Z L, Zhou G B, et al. Effects of Sb addition on microstructure and properties of Mg-5Al-2Sr alloy[J]. Mater. Sci. Technol., in accepted

(朱晓春, 刘子利, 周桂斌等. Sb对Mg-5Al-2Sr合金组织和性能的影响[J]. 材料科学与工艺, 已录用)

[16] Yang Z, Li J P, Zhang J X, et al. Review on research and development of magnesium alloys[J]. Acta Metall. Sinica., 2008, 21(5): 313-328

[17] Song G, Atrens A, Dargusch M. Influence of microstructure on the corrosion of diecast AZ91D[J]. Corros. Sci., 1998, 41(2): 249-273

[18] Shi Z, Liu M, Atrens A. Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation[J]. Corros. Sci., 2010, 52(2): 579-588

[19] Cao C N. Corrosion Theory[M]. Beijing: Chemical Industry Press, 2004

(曹楚南. 腐蚀电化学原理[M]. 北京: 化学工业出版社, 2004)

[20] Zhang B H, Cong W B, Yang P. Electrochemical Corrosion and Protection of Metals [M]. Beijing: Chemical Industry Press, 2005

(张宝宏, 丛文博, 杨萍. 金属电化学腐蚀与防护[M]. 北京: 化学工业出版社, 2005)

[21] Song G, Atrens A. Understanding magnesium corrosion: A framework for improved alloy performance[J]. Adv. Eng. Mater., 2003, 5(12): 837-858

[22] Makar G L, Kruger J, Joshi A. Advances in Magnesium Alloys and Composites[M]. Pennsylvania: Metallurgical Society, 1988

[23] Cao C N, Zhang J Q. Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002

(曹楚南, 张鉴清. 电化学阻抗谱导论[M]. 北京: 科学出版社, 2002)

[24] Liu L, Hu J M, Zhang J Q, et al. Evaluation of protectiveness of organic coatings by means of high-frequency EIS measurement [J]. Corros. Sci. Prot. Technol., 2010(4): 325-328

(刘倞, 胡吉明, 张鉴清等. 基于高频电化学阻抗谱测试的涂层防护性能评价方法[J]. 腐蚀科学与防护技术. 2010(4): 325-328)

[25] Kouisni L, Azzi M, Dalard F, et al. Phosphate coatings on magnesium alloy AM60: Part 2: Electrochemical behaviour in borate buffer solution[J]. Surf. Coat. Technol., 2005, 192(2-3): 239-246

[26] Bessone J B, Salinas D R, Mayer C E, et al. An EIS study of aluminium barrier-type oxide films formed in different media[J]. Electrochim. Acta, 1992, 37(12): 2283-2290

[27] Song G L, Andrej A, Wu X L, et al. Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride[J]. Corros. Sci., 1998, 40(10): 1769-1791

[28] Frederick, P S. Corrosion and protection of magnesium[A]. 37th Annual World Conference on Magnesium[C]. New York, 1980: 33-37

[29] Song Y, Shan D, Chen R, et al. Effect of second phases on the corrosion behaviour of wrought Mg-Zn-Y-Zr alloy[J]. Corros. Sci., 2010, 52(5): 1830-1837

[30] Shi F, Yu Y C, Guo X F, et al. Corrosion behavior of as-cast Mg68Zn28Y4 alloy with I-phase[J]. Trans. Nonferrous Met. Soc. China., 2009, 19(5): 1093-1097

[31] Rajan A, Naing A, W Z, et al. Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy[J]. Corros. Sci., 2000, 42(8): 1433-1455
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] Zhenwei GENG,Daihong XIAO. Effect of Zn Addition on Microstructure and Corrosion Property of As-extruded Mg-13Gd-2Cu Alloy[J]. 中国腐蚀与防护学报, 2016, 36(6): 595-603.
[3] LIU Zili, LIU Xiqin, WANG Huaitao, HU Jindong, HOU Zhiguo. Effect of Ti Addition on Microstructure and Corrosion Property of Zn-5Al Alloy[J]. 中国腐蚀与防护学报, 2014, 34(6): 515-522.
[4] LIANG Shuquan, ZHANG Yong, GUAN Dikai, TAN Xiaoping, TANG Yan, MAO Zhiwei. EFFECT OF ROLLING TEMPERATURE ON MICROSTRUCTURE AND PERFORMANCES OF Al-Mg-Sn-Bi-Ga-In ALLOY ANODE[J]. 中国腐蚀与防护学报, 2010, 30(4): 295-299.
[5] ;. EFFECTS OF DISSOLVED OXYGEN ON THE LOW CYCLE CORROSION FATIGUEBEHAVIOR AND SURFACE FILM OF CARBON STEEL TU48 IN HOT WATER[J]. 中国腐蚀与防护学报, 2005, 25(3): 167-170 .
[6] Yongtao Zhao; Changfei Liu; Xiaojian Gao. ELECTROCHEMICAL DETERMINATION OF CORROSION FORTHE HIGH STRENGTH STEEL WIRE IN CONCRETE CROSSBEAM[J]. 中国腐蚀与防护学报, 2003, 23(6): 362-366 .
[7] Xu Ying; Yuan Luping; Lin Dongliang(T. L. Lin)(Shanghai Jiao Tong Univ.)Lin Jianhong; Wang Zhengdong; Wu Dongdi(East China Univ. of Chemical Technology). EFFECTS OF DISTRIBUTION OF HYDROGEN CONCENTRATION ON DISBONDING FOR STAINLESS STEEL WELD OVERLAY[J]. 中国腐蚀与防护学报, 1995, 15(2): 112-118.
No Suggested Reading articles found!