Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2012, Vol. 32 Issue (5): 369-374    DOI:
Current Issue | Archive | Adv Search |
EFFECT OF SOLUTION STATE ON CATHODIC POLARIZATION BEHAVIOR OF Q345 STEEL BENEATH SIMULATED DISBONDED COATING
WU Zhibin, WEI Yinghua, LI Jing, SUN Chao
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Download:  PDF(1123KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Potential and current distributions in a cathodically polarized crevice between a simulated disbonded coating and segmented Q345 steels were measured in this paper. The effects of agitation, oxygen concentration and pH value of initial solution on cathodic polarization behavior were studied. The results showed that agitation forced the oxygen in bulk solution to enter the crevice, thus degrading cathodic polarization level of Q345 steels in crevice. In low conductivity solution, agitation caused oxygen concentration cells in crevice, and aggravated corrosion at the rear of crevice. The oxygen concentration and initial solution pH had little influence on the final cathodic polarization level of Q345 steels beneath the simulated disbonded coating.

Key words:  cathodic protection      crevice corrosion      agitation      oxygen concentration      pH value     
Received:  09 October 2011     
ZTFLH:  TG172  
Corresponding Authors:  WEI Yinghua     E-mail:  yhwei@imr.ac.cn

Cite this article: 

WU Zhibin, WEI Yinghua, LI Jing, SUN Chao. EFFECT OF SOLUTION STATE ON CATHODIC POLARIZATION BEHAVIOR OF Q345 STEEL BENEATH SIMULATED DISBONDED COATING. Journal of Chinese Society for Corrosion and protection, 2012, 32(5): 369-374.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2012/V32/I5/369

[1] Deflorian F, Rossi S. An EIS study of ion diffusion through organic coatings [J]. Electrochim. Acta, 2006, 51: 1736-1744

[2] Toncre A C. On achieving polarization beneath unbonded pipe coatings [J]. Mater. Perform., 1984, 23(8): 22-27

[3] Brousseau R, Qian S. Distribution of steady-state cathodic currents underneath a disbonded coating [J]. Corrosion, 1994, 50(12): 907-911

[4] Chin D T, Sabde G M. Current distribution and electrochemical environment in a cathodically protected crevice [J]. Corrosion, 1999, 55(3): 229-237

[5] Perdomo J J, Song I. Chemical and electrochemical conditions on steel under disbonded coatings: the effect of applied potential, solution conductivity, crevice thickness and holiday size [J]. Corros. Sci., 2000, 42: 1389-1415

[6] Li Z F, Gan F, Mao X. A study on cathodic protection against crevice corrosion in dilute NaCl solutions [J]. Corros. Sci., 2002, 44: 689-701

[7] Chen X, Li X G, Du C W, et al. Effect of cathodic protection on corrosion of pipeline steel under disbonded coating[J]. Corros. Sci., 2009, 51: 2242-2245

[8] Yan M C, Wang J Q, Ke W, et al. Effectiveness of cathodic protection under simulated disbonded coating on pipelines [J]. J. Chin. Soc. Corros. Prot., 2007, 27(5): 257-262

    (闫茂成, 王俭秋, 柯伟等. 埋地管线剥离覆盖层下阴极保护的有效性 [J]. 中国腐蚀与防护学报, 2007, 27(5): 257-262)

[9] Chen X, Li X G, Du C W, et al. Crevice corrosion behavior of the steel X70 under cathodic polarization [J]. Acta Metall. Sin., 2008, 44(12): 1431-1438

    (陈旭, 李晓刚, 杜翠薇等. 阴极极化条件下X70钢的缝隙腐蚀行为 [J]. 金属学报, 2008, 44(12): 1431-1438)

[10] Jack T R, Van Boven G, Wilmott M, et al. Cathodic protection potential penetration under disbonded pipeline coating [J]. Mater. Perform., 1994, 33: 17-21

[11] Gan F, Sun Z W, Sabde G, et al. Cathodic protection to mitigate external corrosion of underground steel pipe beneath disbonded coating [J]. Corrosion, 1994, 50(10): 804-816

[12] Fessler R R, Markworth A J, Parkins R N. Cathodic protection levels under disbonded coatings [J]. Corrosion, 1983, 39(1): 20-25

[13] NACE Standard RP-01-69. Recommended practice, control of external corrosion on undergrounded and submersed metallic piping systems [S].

[14] Yan M C, Weng Y J. High pH environment under debond-ed coating on cathodic protected pipelines [J]. J. Chin. Soc. Corros. Prot., 2004, 24(2): 95-99

     (闫茂成, 翁永基. 阴极保护管线破损涂层下高pH环境形成规律[J]. 中国腐蚀与防护学报, 2004, 24(2): 95-99)

[1] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[2] ZHAO Baijie, FAN Yi, LI Zhenzhen, ZHANG Bowei, CHENG Xuequn. Crevice Corrosion Behavior of 316L Stainless Steel Paired with Four Different Materials[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[3] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[4] ZHAO Shuyan,TONG Xinhong,LIU Fuchun,WENG Jinyu,HAN En-Hou,LI Xiaohui,YANG Lin. Corrosion Resistance of Three Zinc-rich Epoxy Coatings[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[5] Guirong WANG,Yawei SHAO,Yanqiu WANG,Guozhe MENG,Bin LIU. Effect of Applied Cathodic Protection Potential on Cathodic Delamination of Damaged Epoxy Coating[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[6] Changgang WANG,Jie WEI,Xin WEI,Xin MU,Fang XUE,Junhua DONG,Wei KE,Guoping LI. Crevice Corrosion Behavior of Several Super Stainless Steels in a Simulated Corrosive Environment of Flue Gas Desulfurization Process[J]. 中国腐蚀与防护学报, 2019, 39(1): 43-50.
[7] Xin LI,Xu CHEN,Wuqi SONG,Jiaxing YANG,Ming WU. Effect of pH Value on Microbial Corrosion Behavior of X70 Steel in a Sea Mud Extract Simulated Solution[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[8] Xiankang ZHONG,Junying HU. Corrosion Behavior of X65 Carbon Steel in CO2Containing Liquids with Constant pH and Ferrous Ion Concentration[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[9] Yue QIAO, Zhiping ZHU, Lei YANG, Zhifeng LIU. Monitoring and Simulated Experiments of Oxidation-Reduction Potential of Boiler Feedwater at High Temperatures[J]. 中国腐蚀与防护学报, 2018, 38(5): 487-494.
[10] Ping QIU, Lianjie YANG, Yu SONG, Hongfei YANG. Influence of DMF Modified TiO2 Film on the Photogenerated Cathodic Protection Behavior[J]. 中国腐蚀与防护学报, 2018, 38(3): 289-295.
[11] Sai YE, Moradi Masoumeh, Zhenlun SONG, Fangqin HU, Zhaohui SHUN, Jianping LONG. Inhibition Effect of Pseudoalteromonas Piscicida on Corrosion of Q235 Carbon Steel in Simulated Flowing Seawater[J]. 中国腐蚀与防护学报, 2018, 38(2): 174-182.
[12] Jie KOU, Xince ZHANG, Gan CUI, Baoan YANG. Research Progress on Cathodic Protection Potential Distribution of Tank Bottom Plate[J]. 中国腐蚀与防护学报, 2017, 37(4): 305-314.
[13] Xiaolin WANG, Maocheng YAN, Yun SHU, Cheng SUN, Wei KE. AC Interference Corrosion of Pipeline Steel Beneath Delaminated Coating with Holiday[J]. 中国腐蚀与防护学报, 2017, 37(4): 341-346.
[14] Shuan LIU,Kaihe ZHOU,Yunhui FANG,Xiaozhong XU,Jiong JIANG,Xiaoping GUO,Wenru ZHEN,Jibin PU,Liping WANG. Effect of Environmental Factors on Corrosion Behavior of Zn in Saturated Zn(OH)2 Solution I—Cl- Concentration and pH Values[J]. 中国腐蚀与防护学报, 2016, 36(6): 522-528.
[15] Tingyong WANG,Lanying MA,Xiangchen WANG,Haibing ZHANG,Kai CHEN,Yonggui YAN. Investigation of Cathodic Protection Parameters of Candi-date Materials of Condenser for a Nuclear Power Station and Its Application in Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 624-630.
No Suggested Reading articles found!