Please wait a minute...
J Chin Soc Corr Pro  2012, Vol. 32 Issue (1): 59-63    DOI:
Current Issue | Archive | Adv Search |
HIGH TEMPERATURE NAPHTHENIC ACID CORROSION RESEARCH OF TYPICAL AUSTENITIC STAINLESS STEEL
JIANG Ke1, CHEN Xuedong1,2, YANG Tiecheng1,2, ZHANG wei2, LIANG Chunlei1
1. National Technical Research Center on Safety Engineering of Pressure Vessel and Pipelines, Hefei General Machinery Research Institute, Hefei 230031
2. Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou,310032
Download:  PDF(1844KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The corrosion behaviors of 321 and 316L austenitic stainless steel in high-temperature naphthenic acid medium were investigated by pipe flow. The influence of the erosion angle on naphthenic acid corrosion resistance of stainless steel was mainly analyzed. The results revealed that naphthenic acid corrosion rate increased with increasing temperature. The corrosion rates of erosion angle 90° is greater than 0° at the same temperature. The present experimental data and API 581, on-line monitoring data are close. Similar results were obtained after the test data compared with the empirical data of API 581 and on-line monitoring data. It was shown that naphthenic acid corrosion is most severe in areas of highest turbulence.
Key words:  naphthenic acid corrosion      austenitic stainless steel      erosion angle      turbulent intensity     
Received:  25 September 2010     
ZTFLH: 

TG142.71

 
Corresponding Authors:  YANG Tiecheng     E-mail:  ytc888@yahoo.com.cn

Cite this article: 

JIANG Ke, CHEN Xuedong, YANG Tiecheng, ZHANG wei, LIANG Chunlei. HIGH TEMPERATURE NAPHTHENIC ACID CORROSION RESEARCH OF TYPICAL AUSTENITIC STAINLESS STEEL. J Chin Soc Corr Pro, 2012, 32(1): 59-63.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2012/V32/I1/59

[1] Slavcheva E, Shone B, Turnbull A. Review of naphthenic acid corrosion in oil refining [J]. Br. Corros. J., 1999,34(2): 125-131

[2] Wu X Q, Jing H M, Zheng Y G, et al. The testing equipment simulating high-temperature and high-velocity situations in oil refinery industry [J].J. Chin. Soc. Corros. Prot., 2002, 22(1): 1-7

    (吴欣强, 敬和民, 郑玉贵等.模拟工业炼油环境高温高流速状态的循环测试试验装置及其实验参数选择[J].中国腐蚀与防护学报, 2002, 22(1): 1-7)

[3] Tebbal S, Kane R D. Review of critical factors affecting crude corrosivity [A]. Corrosion 1996[C]. Houston: NACE International, 1996: 607

[4] Xu P, Chen X D, Qin Z C, et al. Testing equipment for naphthenic acid corrosion in high-temperature and fast-flow environment [P]. China Patent: 200920142827, 2009

    (徐鹏,陈学东, 秦宗川等. 高温高流速环烷酸腐蚀试验装置[P]. 中国专利:200920142827, 2009)

[5] Yu J F, Gan F X, Hao L, et al. High temperature naphthenic acid corrosion of steel in high tan refining media [J]. J. Chin.Soc. Corros. Prot., 2009, 29(6): 481-485

    (余建飞, 甘复兴,郝龙等. 碳钢和不锈钢在高温环烷酸介质中的腐蚀行为[J].中国腐蚀与防护学报, 2009, 29(6): 481-485)

[6] American Petroleum Institute. Risk based resource document API 581[S]. 2000

[7] Liang C L, Wang J J, Gao J F, et al. Research on corrosion laws in processing high acidic crude oil by monitoring[A]. Pressure Vessel for Advanced Technology [C]. Beijing: Chemical Industry Press, 2009: 248-254

    (梁春雷,王建军,高俊峰等.监测研究高酸原油加工中的腐蚀规律[A]. 压力容器先进技术[C]. 北京:化学工业出版社, 2009. 248-254)

[8] Dong Z H, He J B, Guo X P, et al. High Temperature Interactive Corrosion of Naphthenic Acid and Organic Sulphide on Cr5Mo Steel in Synthetic Refining Mixture[J]. J. Chin. Soc.. Corros.Prot., 2011, 31(3): 219-224

    (董泽华, 何金杯, 郭耀亨等.环烷酸与有机硫对Cr5Mo钢高温腐蚀的交互作用研究 [J].中国腐蚀与防护学报, 2011, 31(3): 219-224)

[9] Bota G M, Qu D R, Nesic S, et al. Naphthenic acid corrosion of mild steel in the presence of sulfide scales formed in crude oil fractions at high temperature[A]. Corrosion/2010[C].Houston: NACE International, 2010, 10353

[10] Zheng Y G, Yao Z M, Ke W. Review on the effects of hydrodynamic factors on erosion-corrosion [J]. Corros. Sci. Prot.Technol., 2000, 12(1): 36-40

     (郑玉贵, 姚治铭,柯伟.流体力学因素对冲刷腐蚀的影响机制[J]. 腐蚀科学与防护技术, 2000,12(1): 36-40)

[11] Postlethwaite J, Nesic S. Relationship between the structure of disturbed flow and erosion-corrosion[J]. Corrosion,1990, 46(11): 847-880

[12] Chen Z P, Zhang J, Qin F, et al. Summarization of high-temperature naphthenic acid corrosion and its control technique on pipeline [J]. Pipeline Tech. Equip., 2009, 1:1-3

     (陈志平,张剑, 钦峰等. 管线的高温环烷酸腐蚀与控制技术综述[J]. 管道技术与设备,2009, 1: 1-3)
[1] WANG Qinying,PEI Rui,XI Yuchen. Erosion-corrosion Behavior of Laser-clad Ni-based Alloy Coating on Q235 Carbon Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[2] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[3] Xiwu LIU,Xiaoyan ZHAO,Xin'an CUI,Lanfei XU,Xiaowei LI,Rongqi CHENG. Corrosion Behavior of 304L Stainless Steel in Nitric Acid-Sodium Nitrate Solutions[J]. 中国腐蚀与防护学报, 2018, 38(6): 543-550.
[4] Xiaoyan ZHAO, Xiwu LIU, Xin'an CUI, Fengchang YU. Corrosion Behavior of 304L Steel in Nitric Acid Environment[J]. 中国腐蚀与防护学报, 2018, 38(5): 455-462.
[5] Chao SUN, Xiao YANG, Yuhua WEN. Effect of High-Al Austenitic Stainless Alloy Coatings Prepared by Magnetron Sputtering on High Temperature Oxidation Resistance of 316 Stainless Steel[J]. 中国腐蚀与防护学报, 2017, 37(6): 590-596.
[6] LIU Guiqun, ZHENG Yugui, JIANG Shengli, JING Junhang, DONG Weijuan, ZENG Hong, SI Pinxian. Stability and Erosion Corrosion Behavior of Corrosion Product Film of Q235 Carbon Steel and Cr5Mo Low Alloy Steel in Simulated Oil Refinery Media[J]. 中国腐蚀与防护学报, 2015, 35(2): 122-128.
[7] YIN Kaiju, QIU Shaoyu, TANG Rui, HONG Xiaofeng, ZHANG Lefu, ZHANG Qiang. CORROSION BEHAVIOR OF SUPER-AUSTENITIC STAINLESS STEEL AL-6XN IN SUPERCRITICAL WATER[J]. 中国腐蚀与防护学报, 2012, 32(5): 375-380.
[8] SUN Tao, DENG Bo, XU Juliang, LI Jin, JIANG Yiming. INFLUENCE OF NIOBIUM AND NITROGEN ON THE RESISTANCE TO PITTING AND INTERGRANULAR CORROSION OF 304 AUSTENITIC STAINLESS STEEL[J]. 中国腐蚀与防护学报, 2010, 30(6): 421-426.
[9] XU Shan,DU Nan,ZHAO Qing,YE Mingyang. MONITORING THE PITTING SUSCEPTIBILITY OF AUSTENITIC STAINLESS STEEL IN NaCl SOLUTION BY ELECTRONIC SPECKLE PATTERN INTERFEROMETRY[J]. 中国腐蚀与防护学报, 2010, 30(5): 403-409.
[10] CHEN Meiling LIU Yuandong YANG Li YANG Jun GAO Hong. PITTING CORROSION RESISTANCE OF NANO-SiC POWDERS REINFORCED CAST STAINLESS STEEL[J]. 中国腐蚀与防护学报, 2009, 29(6): 411-414.
[11] . CORROSION FATIGUE BEHAVIOR OF 304 STAINLESS STEEL MICRO-SIZED SPECIMENS[J]. 中国腐蚀与防护学报, 2008, 28(2): 99-103 .
[12] ;. RESEARCH OF EPR ON THE SUSCEPTIBILITY TO INTERGRANULAR ATTACK OF AUSTENITIC STAINLESS STEEL[J]. 中国腐蚀与防护学报, 2007, 27(1): 54-59 .
[13] Hongmei Li; Xing Liu; Xun Cai; Wu Yang. Electrochemical Potentiokinetic Reactivation Measurement and Surface Feature Observation on Austenitic Stainless Steel Irradiated by High Energy He+ or Fe+ Ions[J]. 中国腐蚀与防护学报, 2006, 26(1): 37-42 .
[14] Yufang Zhang; MinXV Lu; Yahong Zhu. A STUDY ON THE ADSORPTION BEHAVIOR OFTHIO-PHOSPHATE INHIBITOR ON THE METAL SURFACE[J]. 中国腐蚀与防护学报, 2002, 22(5): 282-285 .
[15] Rongguang Wang. Study on SCC Behavior of Austenitic Stainless Steels in H2S Saturated Aqueous Solutions Containing Cl-[J]. 中国腐蚀与防护学报, 2000, 20(1): 47-53 .
No Suggested Reading articles found!