Please wait a minute...
J Chin Soc Corr Pro  2011, Vol. 31 Issue (1): 40-45    DOI:
Research Articles Current Issue | Archive | Adv Search |
QUANTITATIVE DETERMINATION OF MECHANICAL PROPERTIES FOR CAVITATION CORROSION SURFACE LAYER OF METAL BY MICRO/NANO MECHANICS MEASUREMENT TECHNOLOGY
YONG Xingyue, JI Jing, ZHANG Yaqin, LI Dongliang, ZHANG Zhanjia
Beijing University of Chemical Technology, Beijing 100029
Download:  PDF(1379KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The microhardness of the cross section of metal surface layer and the nano-mechanical properties of cavitation corrosion surface layer for austenitic stainless steel after cavitation corrosion test were quantitatively determined by micro/nano mechanics measurement technology on the base of researches on the cavitation corrosion of austenitic stainless steel. The nano-mechanical parameters of cavitation corrosion surface layer and their changes with displacement into surface including in the relation between the degradation of nano-mechanical properties of cavitation corrosion surface layer and cavitation corrosion were studied. It was found that the surface layer of austenitic stainless steel was composed of cavitation corrosion surface layer with smaller hardness, hardening layer with higher hardness and metal substrate under cavitation corrosion. The degradation of nano-mechanical properties for cavitation corrosion surface layer was induced by the interaction between cavitation and corrosion of media,resulting in serious cavitation corrosion of austenitic stainless steel. There was a critical value for the degradation of nano-mechanical properties of cavitation corrosion surface layer, below which austenitic stainless steel was seriously subjected to cavitation corrosion. And that nanohardness played a dominating role during cavitation corrosion of austenitic stainless steel. The ratio of nano-hardness to nano- elastic modulus (H/E) of cavitation corrosion surface layer is a dimensionless function, which can be used for comprehensively measuring degradation degree of cavitation corrosion surface layer of metal and for studying the relation between the degradation of nano-mechanical properties of cavitation corrosion surface layer and the mean depth of cavitation corrosion penetration of metals.
Key words:  micro/nano mechanics measurement technology      nanohardness and elastic modulus      cavitation corrosion      corrosion surface layer      mechanical property degradation     
Received:  10 April 2010     
ZTFLH: 

TB383

 
  TG174

 
Corresponding Authors:  YONG Xingyue     E-mail:  yongxy@mail.buct.edu.cn

Cite this article: 

YONG Xingyue, JI Jing, ZHANG Yaqin, LI Dongliang, ZHANG Zhanjia. QUANTITATIVE DETERMINATION OF MECHANICAL PROPERTIES FOR CAVITATION CORROSION SURFACE LAYER OF METAL BY MICRO/NANO MECHANICS MEASUREMENT TECHNOLOGY. J Chin Soc Corr Pro, 2011, 31(1): 40-45.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2011/V31/I1/40

[1] Liu W, Zheng Y G, Yao Z M, et al. Research progress on cavitation erosion of metallic materials [J]. J. Chin. Soc. Corros.Prot., 2001, 21(4):250-255

    (柳伟, 郑玉贵, 姚治铭等. 金属材料的空蚀研究进展 [J]. 中国腐蚀与防护学报, 2001, 21(4): 250-255)

[2] Luo S Z, Jing H M, Zheng Y G, et al. Cavitation corrosion behavior of CrMnN duplex stainless steel [J]. J. Chin. Soc. Corros. Prot., 2003, 23(5):276-281

    (骆素珍,敬和民,郑玉贵等. CrMnN双相不锈钢空泡腐蚀行为研究 [J]. 中国腐蚀与防护学报,2003,23(5):276-281)

[3] Kwok C T, Man H C, Cheng F T. Cavitation erosion and damage mechanisms of alloys with duplex structures [J]. Mater. Sci. Eng.,1998, A242: 108-120

[4] Kwok C T, Cheng F T, Man H C. Synergistic effect of cavitation erosion and corrosion of various engineering alloys in 3.5% NaCl solution [J]. Mater. Sci. Eng.,2000, A290: 145-154

[5] Hattori S, Ishikura R. Revision of cavitation erosion database and analysis of stainless steel data [J].Wear, 2010, 268: 109-116

[6] Wang Z Y, Zhu J H. Effect of primary factors on cavitation erosion resistance of some metastable austenitic metals [J]. Acta Metall. Sin., 2003, 39(3): 273-277

    (王再有, 朱金华. 亚稳奥氏体抗空蚀性能及其主要控制因素 [J]. 金属学报,2007, 43(6): 648-652)

[7] Wang Z Y, Zhu J H, Wang Z Z. Analysis on predominant factors characterizing erosion resistance of some ferrous alloys [J]. Acta Metall. Sin., 2007, 43(6): 648-652

    (王再有, 朱金华, 王章忠. 铁基合金抗冲蚀性能主要控制因素的分析 [J]. 金属学报, 2007, 43(6): 648-652)

[8] Liu W, Zheng Y G, Liu C S, et al. Cavitation erosion behavior of Cr-Mn-N stainless steels in comparison with 0Cr13Ni5Mo stainless steel [J], Wear, 2003, 254: 713-722

[9] Guo H X, Lu B T, Luo J L. Response of surface mechanical properties to electrochemical dissolution determined by in situ nano-indentation technique [J]. Electrochem. Commun., 2006, 8: 1092-1098

[10] Zhang T H. Micro/Nano Mechanics Test Technology and Its Application [M], Beijing: Machine Industry Press, 2005

     (张泰华编著. 微/纳米力学测试技术及其应用, 第一版 [M]. 机械工业出版社, 2005)

[11] Kusano Y, Hutchings I M. Analysis of nano-indentation measurements on carbon nitride films [J]., Surf. Coat. Technol,2003, 169-170: 739-742

[12] Jiang X X, Li S Z, Li S.Corrosive Wear of Metals [M]. Beijing: Chemical Industry Press,2003: 324-327

     (姜晓霞,李诗卓, 李署. 金属的磨损腐蚀 [M],北京: 化学工业出版社,2003)

[13] Niu L, Zhang C Q, Lin H C. Effect of elastic and plastic strain on electrochemical behavior of austenitic stainless steel [J], Corros. Sci. Prot. Technol., 2003, 15(4): 187-19

     (牛林,张长桥,林海潮. 弹、塑性应变对奥氏体不锈钢AISI321电化学行为的影响 [J],腐蚀科学与防护技术,2003,15(4):187-190)

[14] Cheng Y T, Cheng C M, Relationships between hardness, elastic modulus, and the work of indentation [J], Appl. Phys. Lett.,73(5), 1998: 614-616

[15] Yang R, Zhang T H, Jiang P, et al.Experimental verification and theoretical analysis of the relationships between hardness, elastic modulus, and the work of indentation [J], Appl. Phys. Lett, 92, 2008: 231906-1-3
 
[1] Ying YANG, Cui LIN, Xiaobin ZHAO, Yifei ZHANG. Initial Stage Cavitation-corrosion of TA2 in Aqueous LiBr Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 540-546.
[2] Cui LIN,Xiaobin ZHAO,Yifei ZHANG. Research Progress on Cavitation-corrosion ofMetallic Materials[J]. 中国腐蚀与防护学报, 2016, 36(1): 11-19.
No Suggested Reading articles found!