|
|
EFFECT OF ALLOYING ELEMENTS TO HOT CORROSION BEHAVIOR OF NOVEL Co-Al-W SUPERALLOY |
XU Yangtao1,2, XIA Tiandong1,2, YAN Jianqiang1,2 |
1. State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050
2. Key Laboratory of Non-ferrous Metal Alloys, Ministry of Education,Lanzhou University of Technology,Lanzhou 730050 |
|
|
Abstract Co-Al-W alloy is a kind of novel Co-based superalloy strengthened by ternary compound γ'-Co3(Al,W) phase with the precipitation strengthening on γ-Co matrix. The paper studies the kinetic of hot corrosion of Co-Al-W superalloy at 800℃ in 75% Na2SO4+25\% NaCl molten salt and the effect on hot corrosion behavior of Co-Al-W alloy with alloying elements of Mo, Nb, Ta and Ti. The results show that the alloy of 2Mo, 2Nb, 2Ta and 2Ti have the superior anti-hot corrosion ability compared to 9.8W alloy. The anti-hot corrosion ability of Co-Al-W alloy with alloying elements Ta and Nb are inferior to Co-Al-W alloy adding Mo and Ti elements. The hot corrosion oxide scale with alloying elements of Mo, Nb, Ta and Ti is still made up of three layers, that is the external corrosion layer consists of Co oxide CoO and Co3O4, the intermediate mixed oxides layer composed of complex oxide and nonuniform oxide layer of alloying elements, Co, Al, W and an internal attacked layer with different compounds of Co, Al and O. With the increasing of corrosion times, the intermediate mixed oxides layer becomes thicker, the thickness of internal and external layer almost has no change, but compactness of internal layer is gradually increased.
|
Received: 19 October 2009
|
|
[1] Chen L,Wang F G. Process in study on anti-high temperature oxidation alloy [J]. Mater. Rev., 2002, 16(5): 27-29 (陈磊, 王富岗. 抗高温氧化合金的研究进展 [J]. 材料导报, 2002, 16(5): 27-29)[2] Kai W, Lee C H, Lee T W, et al. Sulfidation behavior of Inconel 738 superalloy at 500-900℃ [J]. Oxid. Met.,2001, 56(1-2): 51-71[3] Misra R D K, Sivakumar R. Effect of NaCl vapor on the oxidation of Ni-Cr alloy [J]. Oxid. Met.,1986, 25(1-2): 83-92[4] Zhu R Z, Guo M J, Zuo Y. A Study of the mechanism of internal sulfidation-internal oxidation during hot corrosion of Ni-base alloys [J]. Oxid. Met., 1987, 27(5-6): 253-265[5] Bourhis Y, John C S. Na2SO4 and NaCl-induced hot corrosion of six nickel-base superalloys [J] . Oxid. Met., 1975, 9(6): 507-528[6] Kameswa S R. The role of NaCl in the hot-corrosion behavior of Nimonic alloy 90 [J]. Oxid. Met., 1986, 26(1-2): 33-44[7] Cui H, Zhang J S, Murata Y, et al.Hot corrosion behavior of Ni -based superalloy with higher Cr contents-part Ⅱ. Mechanism of hot corrosion behavior [J]. J Univ.Sci. Technol. Beijing (Eng. Ed.), 1996, 3(2): 91-98[8] Huang Q Y, Li H K. High Temperature Alloy [M]. Beijing: Metallurgical Industry Press, 2000, 100-133 (黄乾尧, 李汉康. 高温合金 [M]. 北京: 冶金工业出版社, 2000, 100-133)[9] Robert I, Rapp A. Hot corrosion of materials: a fluxing mechanism [J]. Corros. Sci., 2002, 44(2): 209-221[10] Li Y, Guo J T, Yuan C, et al. Hot corrosion of nickel-base cast superalloy K35 at 800℃ [J]. J. Chin.Soc. Corros. Prot., 2005, 25(4): 250-255 (李云, 郭建亭, 袁超等. 镍基铸造高温合金K35的热腐蚀行为 [J]. 中国腐蚀与防护学报, 2005, 25(4): 250-255)[11] Sato J, Omori T, Oikawa K, et al. Cobalt-base high-temperature alloys [J]. Science, 2006, 312: 90-93[12] Akane S, Garret C. de Nolf, Pollock. et al. Flow stress anomalies in γ/γ' two-phase Co-Al-W-base alloys [J]. Scr. Mater., 2007, 56(5): 385-388[13] Beltran A M. Superalloys II [M]. New York: Wiley, 1987: 135[14] Li S S, Han Y F, Xiao C B, et al.Corrosion resistances of Ni3Al based alloy IC6 and MCrAlY overlay coatings [J]. Chin. J. Nonferrous Met., 2003, 13(6): 1451-1455 (李树索, 韩雅芳, 肖程波等. Ni3Al基合金IC6及MCrAlY包覆涂层的抗腐蚀性能 [J]. 中国有色金属学报, 2003, 13(6): 1451-1455)[15] Ecer G M, Meier G H. Oxidation of high-chromium Ni-Cr alloys [J].Oxid. Met., 1979, 13(2): 119-158[16] Ben G, Abderrazlk, Moulin G, et al. Relation between impurities and oxide-scale growth mechanisms on Ni-34Cr and Ni-20Cr alloys. I. influence of C, Mn, and Si [J]. Oxid. Met., 1990, 33(3-4):191-235[17] Liu P S, Liang K M. High-temperature oxidation behavior of the Co-base superalloy DZ40M in air [J]. Oxid.Met., 2000, 53(3-4): 351-360[18] Liu P S. High temperature oxidation behavior of low pressure gas phase deposited aluminide coatings on Co-base superalloy DZ40M [J].J. Chin. Soc. Corros. Prot., 1999, 19(3): 144-148 (刘培生. DZ-40M钴基合金低压气相沉积铝化物涂层的高温氧化行为 [J]. 中国腐蚀与防护学报, 1999, 19(3): 144-148)[19] Luthra K L. Low temperature hot corrosion of cobalt-base alloys: partⅠ. Morphology of the reaction product [J]. Metall. Trans., 1982, 13A: 1843-1852[20] Zhao S Q, Xie X S, Gaylord D. Corrosion of a new nickel base superalloy in coal-fired boiler environments [J]. Acta Metall. Sin.,2004, 40(6): 659-663 (赵双群, 谢锡善, Gaylord D. 新型镍基高温合金在模拟燃煤锅炉环境中的腐蚀 [J]. 金属学报, 2004, 40(6): 659-663)[21] Zhang J S, Hu Z Q, Murata Y, et al.Design and development of hot-resistant nickel-base single crystal superalloys by the d-electrons alloy design theory: part Ⅱ. effects of refractory metals Ti,Ta and Nb on microstructure and properties [J]. Metall. Trans., 1993, 24A: 2451-2463[22] Zhu Y S, Zhang S N, Xu L Y, et al. Superalloys [C].Warrendale, PA: TMS, 1988, 703-12 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|