Please wait a minute...
J Chin Soc Corr Pro  2010, Vol. 30 Issue (4): 257-261    DOI:
Research Articles Current Issue | Archive | Adv Search |
CORROSION BEHAVIOR OF MnCu COST-EFFECTIVE WEATHERING STEEL UNDER CYCLIC LOAD IN A WET/DRY CYCLIC CORROSION ENVIRONMENT
WANG Lei, DONG Junhua, KE Wei
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Download:  PDF(1994KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The resistance to corrosion of a MnCu cost-effective weathering steel under cyclic loading in a simulated chloride ion environment was investigated. The experiments were performed using a new wet/dry cyclic corrosion test (CCT). In order to simulate wet and dry alternative corrosion, 0.3 mass% NaCl solutions was sprayed on the specimens which were tensioned in the range of elastic deformation under cyclic loading (the maximum stress was 208 MPa). The rusted specimens were examined by SEM and via electrochemical measurements. The results showed that, in the same cyclic tension period, the MnCu cost-effective weathering steel has stable rust layer after low CCT, but there were more cracks appeared in outer rust layer after higher CCT due to the cyclic loading, but MnCu cost-effective weathering steel had still excellent corrosion resistance, because the inner rust played a key role to resist further corrosion.

Key words:  MnCu cost-effective weathering steel      wet/dry cyclic corrosion test, cyclic load      electrochemical measurements      rust layer     
Received:  20 February 2009     
ZTFLH: 

TG172.3

 
Corresponding Authors:  DONG Junhua     E-mail:  jhdong@imr.ac.cn

Cite this article: 

WANG Lei, DONG Junhua, KE Wei. CORROSION BEHAVIOR OF MnCu COST-EFFECTIVE WEATHERING STEEL UNDER CYCLIC LOAD IN A WET/DRY CYCLIC CORROSION ENVIRONMENT. J Chin Soc Corr Pro, 2010, 30(4): 257-261.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2010/V30/I4/257

[1] Yamashita M, Miyuki H, Nagaro H, et al. The long term growth of the protective rust later formed on weathering steel by atmospheric corrosion during a quarter of a century [J]. Corros.Sci., 1994, 36: 283-299
[2] Misawa T. The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel [J].Corros. Sci., 1974, 14: 279-289
[3] Zhang Q C, Ma F, Zheng W L.Bonding strength between the substrate and protective rust layer of weathering-steel [J]. Mater. Mech. Eng., 2004, 28(6): 30-32
    (张全成, 马峰, 郑文龙. 耐候钢表面保护性锈层与基体结合强度的研究 [J].机械工程材料, 2004, 28(6): 30-32)
[4] Zhang Q C, Wu J S. Mechanical properties of protective rust layer formed on surface of weathering steel panels [J]. J. Iron Steel Res., 2006, 18(3): 42-45
    (张全成, 吴建生. 耐候钢表面保护性锈层的力学性能 [J]. 钢铁研究学报,2006, 18(3): 42-45)
[5] Wang S T, Gao K W, Yang S W, et al. The effect of thermal shock for the cracks in the rust layer of structural steel [A]. The 8th National Youth Proseminar for Corrosion and Protection [C]. Shenyang, 2007, 111-116
    (王树涛, 高克玮, 杨善武等. 热震对结构钢锈层裂纹的影响 [A].第八届全国青年腐蚀与防护研讨会 [C]. 沈阳, 2007, 111-116)
[6] Goo B C, Lee H S. An experimental study on the corrosion and fatigue of structural steels [J]. Key Eng. Mater., 2006, 326: 1059-1062
[7] Wu X H, Zheng Y L, Zhu Z Y, et al. The relation between the structure of rust and corrosion fatigue life [J]. Corros. Sci.Prot. Technol, 1992, 4(1): 53-58
    (吴鑫华, 郑宇礼, 朱自勇等. 锈层结构与腐蚀疲劳寿命的关系 [J].腐蚀科学与防护技术, 1992, 4(1): 53-58)
[8] Dong J H, Chen X H, Han E H, et al. A Cost-effective Weathering Steel [P]. Patent: 200510045624. 6;
    (董俊华,陈新华,韩恩厚等. 一种经济型耐候钢号 [P]. 200510045624.6, 2005)
[9] Dong J H, Chen X H, Han E H, et al. Synergistic effect of copper and manganese on resistant to atmospheric corrosion for low alloying steel [A]. 16th International Corrosion Congress, September [C], Beijing, 2005, 19-24
[10] Dong J H, Chen X H, Han E H, et al. Synergistic effect of copper and manganese on resistant to atmospheric corrosion for low-alloying steel [J]. Iron Steel, 2005, 40: 127-131
[11] Li Q X, Wang Z Y, Han W, et al. Corrosion behavior of weathering steel in a wet/dry environment containing MgCl2 [J]. J. Chin. Soc. Corros. Prot., 2006,26(3): 136-140
     (李巧霞, 王振尧, 韩薇等. 耐候钢在含MgCI2介质的干湿环境下的腐蚀行为 [J]. 中国腐蚀与防护学报, 2006, 26(3): 136-140)
[12] Evans U R. Mechanism of rust [J]. Corros. Sci., 1969, 9(11): 813-821
[13] Evans U R, Taylor C A J. Mechanism of atmospheric rusting [J]. Corros. Sci., 1972, 12(3): 227-246
[14] Chen X H, Dong J H, Han E H, et al. Effect of Cu, Mn on the corrosion performance of carbon steels in wet/dry environments [J]. J. Mater Prot, 2007, 40: 19-22
[15] Dong J, Dong J H, Han E H, et al. Corrosion behavior of rusted mild steel under means of wet/dry alternate conditions [J]. Corros. Sci. Prot. Technol, 2006, 18: 414-417
     (董杰, 董俊华, 韩恩厚等. 低碳钢带锈电极的腐蚀行为 [J].腐蚀科学与防护技术, 2006, 18: 414-417)
[16] Li Q X, Wang Z Y, Han W,et al Characterization of the rust formed on weathering steel exposed to Qinghai salt lake atmosphere [J]. Corros. Sci., 2008, 50:365-371
[17] Nishimura T, Katayama H, Noda K, et al. Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions [J]. Corrosion, 2000, 56(9): 935-941
[18] Chen X H. Synergistic effect of alloying elements on resistance to atmospheric corrosion of cost effective weathering steel [D]. Doctoral Dissertation, Graduate School of Chinese Academy of Sciences, 2007, 50-52
     (陈新华. 合金元素对经济耐候钢大气腐蚀协同抑制作用 [D].中国科学院研究生院博士学位论文, 2007, 50-52)

[1] DENG Junhao,HU Jiezhen,DENG Peichang,WANG Gui,WU Jingquan,WANG Kun. Effect of Oxide Scales on Initial Corrosion Behavior of SPHC Hot Rolled Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[2] Xinxin ZHANG,Zhiming GAO,Wenbin HU,Zhipeng WU,Lianheng HAN,Lihua LU,Yan XIU,Dahai XIA. Correlation Between Corrosion Behavior and Image Information of Q235 Steel Beneath Thin Electrolyte Film[J]. 中国腐蚀与防护学报, 2017, 37(5): 444-450.
[3] Dongliang LI,Guiqin FU,Miaoyong ZHU. Effect of Si on Corrosion Behavior of Model Bridge Steels by Alternative Wetting/drying Test in an Artificial Medium Simulated Hot and Humid Atmosphere of Marine and Industrial Area[J]. 中国腐蚀与防护学报, 2016, 36(5): 433-440.
[4] Jianchun ZHANG, Han MA, Longfei ZUO, Yang LI. Corrosion Behavior of 20MnSiCrV Corrosion Resistant Rebar in Chloride Containing Environment[J]. 中国腐蚀与防护学报, 2015, 35(5): 461-466.
[5] LUO Rui, WU Jun, LIU Xinlong, ZHOU Xuejie, ZHENG Penghua, ZHANG Sanping. Evolution of Rust Layers Formed on Q235 and 09CuPCrNi-A Steels during Initial Stage of Field Exposure in Two Sites of Different Environment[J]. 中国腐蚀与防护学报, 2014, 34(6): 566-573.
[6] PENG Xin,WANG Jia,,WANG Jinlong,SHAN Chuan,JIA Honggang,
LIU Zaijian,WANG Haijie. Corrosion Electrochemical Parameters Test of Rusted Carbon Steel in Seawater[J]. 中国腐蚀与防护学报, 2013, 33(6): 449-454.
[7] LIANG Ping,WANG Ying. Electrochemical Behavior of X80 Steel Covered by A Rust Layer Formed after Short-term Corrosion[J]. 中国腐蚀与防护学报, 2013, 33(5): 371-376.
[8] MI Fengyi, WANG Xiangdong, WANG Bing,CHEN Xiaoping, PENG Yun. INFLUENCE OF MICROSTRUCTURE ON THE CORROSION RESISTANCE FOR LOW CARBON STEEL[J]. 中国腐蚀与防护学报, 2010, 30(5): 391-395.
[9] WANG Bo, LU Kai, WANG Jianjing, JIANG Maofa,WANG Deyong, LIU Chengjun. CORROSION BEHAVIOR OF WEATHERING STEEL WITH HIGH MANGANESE CONTENT IN CONDITION SIMULATIING INDUSTRIAL ATMOSPHERE[J]. 中国腐蚀与防护学报, 2010, 30(4): 333-336.
[10] . A review on the progress of investigation on weathering steel and its rust layer[J]. 中国腐蚀与防护学报, 2007, 27(6): 367-372 .
[11] . The progress of Research Methods on Atmospheric Corrosion[J]. 中国腐蚀与防护学报, 2004, 24(4): 249-256 .
No Suggested Reading articles found!