Please wait a minute...
J Chin Soc Corr Pro  2008, Vol. 28 Issue (4): 240-245     DOI:
Research Report Current Issue | Archive | Adv Search |
Failure analysis and the mechanism of 7020 aluminum alloy train coupler girder
上海材料研究所检测中心
Download:  PDF(1448KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  By means of optical emission spectrometer, universal material testing machine, optical microscope, scanning electronic microscope and finite element calculation were used to analyze the multi-cracking reason of 7020 aluminum alloy train coupler girder, and study results indicated that stress corrosion cracking (SCC) caused by wet and sweltering hot weather .According to finite element calculation results it could be known there was no stress at the “Z” direction, and welding residual tension stress is the main cracking reason. Modeling test results of DCB samples showed that the cracking mode of train coupler girder and DCB sample is same. Cracking mechanism of 7020 aluminum alloy was researched and discussed.
Key words:       
Received:  19 February 2008     
ZTFLH:  TG146.32  
  U260.32  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

. Failure analysis and the mechanism of 7020 aluminum alloy train coupler girder. J Chin Soc Corr Pro, 2008, 28(4): 240-245 .

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2008/V28/I4/240

[1]Yao S P,Xu P.High speed maglev transportation made in China[J].J.Traffic Transp.Eng.,2004,4(2):40-44(姚曙光,许平.高速磁浮列车车体国产化[J].交通运输工程学报,2004,4(2):40-44)
[2]Gür C H,Yld Z I.Nondestructive investigation on the effect of pre-cipitation hardening on impact toughness of 7020 Al-Zn-Mg alloy[J].Mater.Sci.Eng.,2004,A382:95-400
[3]Song R G,Dietzel W.Stress corrosion cracking and hydrogen em-brittlement of an Al-Zn-Mg-(Cu)alloy[J].Acta Mater.,2004,52(16):4727-4743
[4]Liu J,Kulak M.A new parading in the design of aluminum alloy for aerospace applications[J].Mater.Sci.Forum,2000,331-337:127-140
[5]Heinz A,Haszler A,Keidel C.Recent development in aluminium alloy for aerospace applications[J].Mater.Sci.Eng.,2000,A280(1):102-107
[6]Zhang X Y,Sun Z H,Liu M H,et al.Effect of environment onstress corrosion cracking of high strength Al alloy[J].J.Chin.Soc,Corros.Prot.,2007,27(6):354-362(张小云,孙志华,刘明辉等.环境对高强度铝合金应力腐蚀行为的影响[J].中国腐蚀与防护学报,2007,27(6):354-362)
[7]Sun Z H,Liu M H,Zhang X Y,et al.Effect of aging parameterson stress corrosion cracking susceptibility of Al-Zn-Mg-Cu alloy[J].J.Chin.Soc.Corros.Prot.,2006,26(4):232(孙志华,刘明辉,张晓云等.时效制度对Al-Zn-Mg-Cu铝合金应力腐蚀敏感性的影响[J].中国腐蚀与防护学报,2006,26(4):232)
[8]Burleigh T D.Mechanism of stress corrosion cracking for aluminumalloy(2)1980~1989 document summary[J].Corrosion,1991,47(2):89-98
[9]Liu J H,Li D,Zhang P F.Effect of hydrogen on stress corrosion cracking of LC4 high strength Al alloy[J].J.Chin.Sic.Corros.Prot.,2002,22(5):308-310(刘继华,李荻,张佩芬.氢对LC4高强铝合金应力腐蚀断裂的影响[J].中国腐蚀与防护学报,2002,22(5):308-310)
[10]Parkins R N,Translated by Yang W.Stress Corrosion Cracking,in Uhlig′s Corrosion Handbook(Second Edition)[M].Beijing:Chemical Industry Press,2005:525
[11]Chu W Y,Qiao L J,Chen Q Z,et al.Fracture and Environment Fracture[M].Beijing:Science Press,2001:120(褚武扬,乔利杰,陈奇志等.断裂与环境断裂[M].北京:科学出版社,2001:120)
[12]Hollingsworth E H,Hunsticker H Y.Corrosion of aluminum and aluminum alloys[J].Corrosion,1987,43(9):583-609
[13]Liu Y.Progress ofresearch on stress corrosion crackingofaluminum alloys[J].J.Beijing Union Univ.(Nat.Sci.),2006,20(1):34(刘洋.铝合金应力腐蚀研究进展[J].北京联合大学学报(自然科学版),2006,20(1):34)
[1] . [J]. 中国腐蚀与防护学报, 0, (): 0-0.
[2] LI Qing, ZHANG Deping, LI Xiaorong, WANG Wei, SUN Baozhuang, AI Chi. Comparison of Stress Corrosion Behavior of TP110TS and P110 Steel in a Simulated Annular Environment of CO2 Injection Well[J]. 中国腐蚀与防护学报, 2020, 40(4): 302-308.
[3] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[4] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[5] XIE Dongbai, HONG Hao, WANG Wen, PENG Xiao, DUO Shuwang. Oxidation Behavior of Stainless Steel 1Cr11Ni2W2MoV in a Simulated Kerosene Combustion Environment[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[6] WANG Haiwei, CHANG Sen, LUAN Xin'gang, SONG Xuemei, WANG Zhen, LI Yanzhang, CHEN Jianli, ZHANG Jirong, HAN Ming, QIU Dangui. Preparation and Properties of Ceramics Composed of Nano-Al2O3 and Polysiloxane-polyborosilicate-TiB2 Modified Polysilborazane as High Temperature Adhesive for SiC Based Ceramics[J]. 中国腐蚀与防护学报, 2020, 40(4): 367-372.
[7] . [J]. 中国腐蚀与防护学报, 2009, 29(4): 317-318.
[8] . [J]. 中国腐蚀与防护学报, 2009, 29(4): 315-315.
[9] . [J]. 中国腐蚀与防护学报, 2009, 29(4): 316-317.
[10] Yonghua Shu; Hongli LiU; Jing Fan; Jiping Cui; Chong Xie. CONTAMINATION AND EROSION OF MAGNESIUM FLUORIDE COATING OF DIFFUSIVE REFLECTION FLAKES BY NITROGEN TETRAOXIDE[J]. 中国腐蚀与防护学报, 2005, 25(2): 70-73 .
[11] Xin Zhou; Huaiyu Yang; Duochang Cai; Changbin Shen; Xiaojie Tao; Dongyun Han. THE CORROSION AND INHIBITION OF MILD STEEL IN MONOETHANOLAMINE SOLUTION ABOUNDED WITH H2S[J]. 中国腐蚀与防护学报, 2005, 25(2): 79-83 .
[12] . CORROSION PRODUCTION ON ARCHAEOLOGICAL BRONZE SURFACE AND ITS DISTRIBUTION WITH DEPTH[J]. 中国腐蚀与防护学报, 2005, 25(3): 163-166 .
[13] ;. EFFECTS OF DISSOLVED OXYGEN ON THE LOW CYCLE CORROSION FATIGUEBEHAVIOR AND SURFACE FILM OF CARBON STEEL TU48 IN HOT WATER[J]. 中国腐蚀与防护学报, 2005, 25(3): 167-170 .
[14] Yuanshi Li; Yan Niu; Weitao Wu. CORROSION BEHAVIOR OF PURE Cr AND TWO Cr-CONTAINING ALLOYS BENEATH ZnCl2 AND KCl-ZnCl2 DEPOSITS[J]. 中国腐蚀与防护学报, 2002, 22(1): 27-31 .
[15] Ying Li; Shujiang Geng; Fuhui Wang. CORROSION RESISTANCE OF NANOCRYSTALLIZEDIN738 COATING IN SALT SOLUTION[J]. 中国腐蚀与防护学报, 2002, 22(6): 349-354 .
No Suggested Reading articles found!