Please wait a minute...
J Chin Soc Corr Pro  1998, Vol. 18 Issue (2): 113-118    DOI:
Current Issue | Archive | Adv Search |
EFFECT OF ALLOYING ELEMENT VANADIUM ON HYDROGEN EMBRITTLEMENT SUSCEPTIBILITY FOR RAIL STEEL
LI Jin-xu WANG Yan-bin CHU Wu-yang(University of Science and Technology Beijing; Beijing 100083)MEI Dong-sheng YU Meng-wen (Panzhihna Iron and Steel Co.; Panzhihua 710076)
Download:  PDF(448KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The threshold hydrogen concentrations for hydrogen blistering and hydrogen-induced elongation loss were 0.7×10-1% and 0.09× 10-4% for DB steel without vanadium; as well as 2.2×10-4% and 0.26×10-4% for PD3 steel containing vanadium, respectively. Obviously, vanadium increase the threshold hydrogen concentration, resulting in decrease in hydrogen embrittlement susceptibility. The main cause for the effect was that alloying element vanadium and carbon combined to form VC, which was irreversible hydrogen trap. The energy for VC was 82.3kJ/mol and its density was 3.36×1021/cm3. The hydrogen-induced elongation loss Iδ decreased linearly with the reciprocal of the diffusible hydrogen concentration C0 for both the steels, i. e. Iδ = 100-9/C0, for DB steel and Iδ = 105-27/C0 for PD3 steel. This showed that vanadium could decrease the elongation loss.
Key words:  Rail steel      Hydrogen embrittlement      Vanadium     
Received:  25 April 1998     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

LI Jin-xu WANG Yan-bin CHU Wu-yang(University of Science and Technology Beijing; Beijing 100083)MEI Dong-sheng YU Meng-wen (Panzhihna Iron and Steel Co.; Panzhihua 710076). EFFECT OF ALLOYING ELEMENT VANADIUM ON HYDROGEN EMBRITTLEMENT SUSCEPTIBILITY FOR RAIL STEEL. J Chin Soc Corr Pro, 1998, 18(2): 113-118.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y1998/V18/I2/113

1 褚武扬.氢损伤及滞后开裂,北京:冶金工业出版社,1989.146
2 Chu W Y,Hsiao C M,Li W X.Metall.Trans.,1984,15A:2087
3 黄中,黄长河,王燕斌,褚武扬.金属学报,1996,32:845
4 黄长河,李金许,王燕斌,褚武扬.金属学报,待发表
5 Bai Q X,Chu W Y,Hsiao C M.Scr.Metall.,1987,21:613
6 蒋兴钢,褚武扬,肖纪美.中国科学,1994,24A:668
7 褚武扬,于广华,程以环,吕荣邦.中国科学,1996,26E:411
8 李密月,张天成,吕宏,楮武扬.中国科学,待发表
[1] ZHAO Dongyang, ZHOU Yu, WANG Dongying, NA Duo. Effect of Phosphating on Hydrogen Embrittlement of SA-540 B23 Steel for Nuclear Reactor Coolant Pump Bolt[J]. 中国腐蚀与防护学报, 2020, 40(6): 539-544.
[2] ZHANG Qichao, HUANG Yanliang, XU Yong, YANG Dan, LU Dongzhu. Research Progress on Hydrogen Absorption and Embrittlement of Titanium and Its Alloy for High-level Nuclear Waste Container in Deep Geological Disposal Environment[J]. 中国腐蚀与防护学报, 2020, 40(6): 485-494.
[3] ZHOU Yu, ZHANG Haibing, DU Min, MA Li. Effect of Cathodic Potentials on Hydrogen Embrittlement of 1000 MPa Grade High Strength Steel in Simulated Deep-sea Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[4] ZHAO Jinbin,ZHAO Qiyue,CHEN Linheng,HUANG Yunhua,CHENG Xuequn,LI Xiaogang. Effect of Different Surface Treatments on Corrosion Behavior of 300M Steel in Qingdao Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[5] REN Jianping,SONG Renguo. Effect of Two-stage Ageing on Mechanical Properties and Sensitivity to Hydrogen Embrittlement of 7050 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[6] Haisheng TONG,Yanhui SUN,Yanjing SU,Xiaolu PANG,Kewei GAO. Investigation on Hydrogen-induced Cracking Behavior of 2205 Duplex Stainless Steel Used for Marine Structure[J]. 中国腐蚀与防护学报, 2019, 39(2): 130-137.
[7] Teng LI, Weiliang JIN, Chen XU, Jianghong MAO. Determination of Steady Critical Current Density of Hydrogen Evolution During Electrochemical Repair Process of Reinforced Concrete[J]. 中国腐蚀与防护学报, 2017, 37(4): 382-388.
[8] Tingyong WANG,Lanying MA,Xiangchen WANG,Haibing ZHANG,Kai CHEN,Yonggui YAN. Investigation of Cathodic Protection Parameters of Candi-date Materials of Condenser for a Nuclear Power Station and Its Application in Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 624-630.
[9] ZHANG Timing, ZHAO Weimin, GUO Wang, WANG Yong. Susceptibility to Hydrogen Embrittlement of X65 Steel Under Cathodic Protection in Artificial Sea Water[J]. 中国腐蚀与防护学报, 2014, 34(4): 315-320.
[10] HAO Wenkui,LIU Zhiyong,ZHANG Xin,DU Cuiwei,LI Xiaogang,LIU Xiang. Effect of H2S Concentration on Stress Corrosion Cracking Behavior of 35CrMo Steel in An Artificial Solution Simulated Drilling Well Waters at Oil Field[J]. 中国腐蚀与防护学报, 2013, 33(5): 357-362.
[11] LI Chengjie,DU Min. Research and Development of Cathodic Protection for Steels in Deep Seawater[J]. 中国腐蚀与防护学报, 2013, 33(1): 10-16.
[12] DONG Xiqing, HUANG Yanliang. RESEARCH PROGRESS FOR STRESS CORROSION CRACKING OF STAINLESS STEEL UNDER MARINE ENVIRONMENT[J]. 中国腐蚀与防护学报, 2012, 32(3): 189-194.
[13] LIN Zhaoqiang, MA Li, YAN Yonggui. EFFECTS OF CATHODIC POLARIZATION ON THE HYDROGEN EMBRITTLEMENT SENSITIVITY OF WELDING LINE IN HIGH STRENGTH HULL STRUCTURAL STEEL[J]. 中国腐蚀与防护学报, 2011, 31(1): 46-50.
[14] ZHANG Yu, SONG Renguo, TANG Puhong. HYDROGEN EMBRITTLEMENT SUSCEPTIBILITY AND Mg-H INTERACTION IN 7075 ALUMINUM ALLOY[J]. 中国腐蚀与防护学报, 2010, 30(5): 364-368.
[15] ZHENG Chuanbo HUANGYanliang HUO Chunyong YU Qing ZHU Yongyan. STRESS CORROSION CRACKING OF X56 GRADE PIPELINE STEEL IN ATMOSPHERIC ENVIRONMENT CONTAINING H2S[J]. 中国腐蚀与防护学报, 2009, 29(1): 19-23.
No Suggested Reading articles found!