Please wait a minute...
J Chin Soc Corr Pro  1997, Vol. 17 Issue (3): 167-172    DOI:
Current Issue | Archive | Adv Search |
ELECTROCHEMICAL PERFORMANCE OF AZ41 MAGNESIUM ALLOY SACRIFICIAL ANODE AT VARIOUS TEMPERATURES
GONG Jinbao XU Naixin ZHANG Chengdian (Shanghai Institute of Metallurgy; Chinese Academy of Sciences; Shanghai 200050)TANG Baixiang (Nanjing Dolomite Mine)
Download:  PDF(1039KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Electrochemical performance of AZ41 magnesium alloy sacrificial anode in saturated calcium sulfate-magnesium hydroxide solution was investigated over the temperature range from 20℃ to 80℃ by galvano-static polarization technique. The potential, current efficiency and surface morphology of the anode after corrosion were not significantly affected by temperature. Current density did not alter current efficiency, while higher current density shifted the potential towards noble and altered corrosion morphology. At various temperatures AZ41 anode was always in the active state and passivation was not observed. XRD showed that the only corrosion product on anode surface was Mg(OH)2. These results gave helpful hints for application of the anode at elevated temperatures.
Key words:  Magnesium alloy sacrificial anode      Cathodic protection      Temperature effect     
Received:  25 June 1997     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

GONG Jinbao XU Naixin ZHANG Chengdian (Shanghai Institute of Metallurgy; Chinese Academy of Sciences; Shanghai 200050)TANG Baixiang (Nanjing Dolomite Mine). ELECTROCHEMICAL PERFORMANCE OF AZ41 MAGNESIUM ALLOY SACRIFICIAL ANODE AT VARIOUS TEMPERATURES. J Chin Soc Corr Pro, 1997, 17(3): 167-172.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y1997/V17/I3/167

1 Ashworth V, Googan CG, Scantlebury JD. British Corrosion Journal, 1979, 14(1):46
2 Haney EG, Materials Performance, 1986, 25(4):31
3 Li Yi. Pacific Corrosion'87, Session 6-Cathodic Protection
4 徐乃欣.腐蚀与防护,1989, (1):19
5 ASTM Designation: G97-89 Standard Test Method for Laboratory Evaluation of Magnesium Sacrificial Anode Test Specimens for Underground Applications
6 徐乃欣.腐蚀与防护,1991, 12(6):308
7 Greenhlatt JH, Zinck E. Corrosion 1959, 15(2):40
8 杨熙珍,杨武.金属腐蚀电化学热力学,电位-pH图及其应用,北就:化学工业出版社,1991. p109
9 Genesca J, Betancourt L, Rodriguez C. Corrosion 1996, 52(7):502
[1] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[2] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[3] ZHAO Shuyan,TONG Xinhong,LIU Fuchun,WENG Jinyu,HAN En-Hou,LI Xiaohui,YANG Lin. Corrosion Resistance of Three Zinc-rich Epoxy Coatings[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[4] Guirong WANG,Yawei SHAO,Yanqiu WANG,Guozhe MENG,Bin LIU. Effect of Applied Cathodic Protection Potential on Cathodic Delamination of Damaged Epoxy Coating[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[5] Ping QIU, Lianjie YANG, Yu SONG, Hongfei YANG. Influence of DMF Modified TiO2 Film on the Photogenerated Cathodic Protection Behavior[J]. 中国腐蚀与防护学报, 2018, 38(3): 289-295.
[6] Jie KOU, Xince ZHANG, Gan CUI, Baoan YANG. Research Progress on Cathodic Protection Potential Distribution of Tank Bottom Plate[J]. 中国腐蚀与防护学报, 2017, 37(4): 305-314.
[7] Xiaolin WANG, Maocheng YAN, Yun SHU, Cheng SUN, Wei KE. AC Interference Corrosion of Pipeline Steel Beneath Delaminated Coating with Holiday[J]. 中国腐蚀与防护学报, 2017, 37(4): 341-346.
[8] Tingyong WANG,Lanying MA,Xiangchen WANG,Haibing ZHANG,Kai CHEN,Yonggui YAN. Investigation of Cathodic Protection Parameters of Candi-date Materials of Condenser for a Nuclear Power Station and Its Application in Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 624-630.
[9] Shuang YANG,Nan TANG,Maocheng YAN,Kangwen ZHAO,Cheng SUN,Jin XU,Changkun YU. Effect of Temperature on Corrosion Behavior of X80 Pipeline Steel in Acidic Soil[J]. 中国腐蚀与防护学报, 2015, 35(3): 227-232.
[10] XU Hongmei, LIU Wei, CAO Lixin, SU Ge, GAO Rongjie. Preparation of ZnO/TiO2 Composite Film on 304 Stainless Steel and Its Photo-cathodic Protection Properties[J]. 中国腐蚀与防护学报, 2014, 34(6): 507-514.
[11] FAN Fengqin, SONG Jiwen, LI Chengjie, DU Min. Effect of Flow Velocity on Cathodic Protection of DH36 Steel in Seawater[J]. 中国腐蚀与防护学报, 2014, 34(6): 550-557.
[12] QIU Jing, DU Min, LU Yuan, ZHANG Ying, GUO Haijun, LI Chengjie. Cathodic Protection of X65 Carbon Steel in a Simulated Oilfield Produced Water[J]. 中国腐蚀与防护学报, 2014, 34(4): 333-338.
[13] LIN Yonghua,ZHANG Xuefeng,HAN Li,ZHANG Lanhe. Comparison of Corrosion Protection Measures of Grounding Grids for Electric Power Station[J]. 中国腐蚀与防护学报, 2013, 33(6): 501-506.
[14] ZHU Junmou,YAO Zhengjun,JIANG Qiong,WEI Dongbo,YIN Guoxian,
LUO Xixi,ZHOU Wenbin. Microstructure and Corrosion Resistance of Cr-free Nanocomposite Zn/Al Coatings[J]. 中国腐蚀与防护学报, 2013, 33(5): 425-429.
[15] WEN Lijuan,GAO Zhiming,LIU Yangyang,LIN Feng. Effects of Applied Cathodic Potential on Susceptibility to Hydrogen Embrittlement and Mechanical Properties of Q235 Steel[J]. 中国腐蚀与防护学报, 2013, 33(4): 271-276.
No Suggested Reading articles found!