Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (5): 407-414    DOI: 10.11902/1005.4537.2015.186
Orginal Article Current Issue | Archive | Adv Search |
Performance of Environmentally Friendly Corrosion- and Scaling-Inhibitor for Central Air Conditioner Cooling Water
Chenlin DAI1,Maodong LI2,Bo YANG2,Yue QIAO1(),Zhiping ZHU1
1. School of Chemical and Biological Engineering, Changsha University of Science & Technology, Changsha 410114, China
2. Guangzhou Special Pressure Equipment Inspection and Research Institute, Guangzhou 510050, China
Download:  HTML  PDF(2914KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to solve the problems of scaling and corrosion of copper and iron in cooling water system for central air conditioner, an optimal compound water treatment agent was developed by screening assay. The compound agent consists of HPMA 16 mg/L+ Surfactant 1.5 mg/L+SLS 75 mg/L+Azole 2.0 mg/L. The performance of corrosion- and scaling- inhibition of the compound agent was characterized by immersion test, rotary coupon test, polarization curve measurement and SEM. Results show that, the compound water treatment agent is a kind of high performance agent as scaling- and corrosion-inhibitor with scaling-inhibition rate as high as 95.70%, while its corrosion-inhibition efficiencies for A3 carbon steel and T2 red copper were 95.58% and 93.25%, respectively. The scaling inhibition effect of the compound agent may be ascribed to the selective adsorption on the active growing points on the CaCO3 crystal facets, which then resulted in distortion of the crystal lattice. The compound agent is a kind of mixing type inhibitor for A3 carbon steel, while a kind of anodic inhibitor for red copper, which mainly suppressed the anodic polarization.

Key words:  central air conditioner cooling water      compound water treatment agent      HPMA      sodium N-Lauroyl sarcosinate     

Cite this article: 

Chenlin DAI,Maodong LI,Bo YANG,Yue QIAO,Zhiping ZHU. Performance of Environmentally Friendly Corrosion- and Scaling-Inhibitor for Central Air Conditioner Cooling Water. Journal of Chinese Society for Corrosion and protection, 2016, 36(5): 407-414.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.186     OR     https://www.jcscp.org/EN/Y2016/V36/I5/407

Fig.1  Scale inhibition efficiency of single agent
Fig.2  Scale inhibition of HPMA compounded with STA
Fig.3  Corrosion inhibition of SLS compounded with ATC
Type of specimen Corrosion rate / mma-1
ST SM SG SC SH SLS Blank
A3 0.2026 0.2103 0.0554 0.5275 0.3996 0.0288 0.6155
T2 0.0073 0.0039 0.0136 0.0087 0.0092 0.0039 0.0311
Table 1  Corrosion rates of A3 steel and T2 Cu in water with one of various tested inhibitors
Level Factor
A (HPMA)mgL-1 B (STA)mgL-1 C (ATC)mgL-1 D (TTA)mgL-1
1 16 1.0 75 1.0
2 20 1.5 100 2.0
Table 2  Setting of four factors and two levels in orthogonal tests
No. A B C D Scale inhibition rate / % Corrosion inhibition rate of A3 / % Corrosion inhibition rate of T2 / %
1 1 1 1 1 93.68 94.51 91.07
2 1 1 2 1 93.26 96.79 92.72
3 1 2 2 2 95.51 96.92 94.76
4 1 2 1 2 95.70 95.43 93.09
5 2 1 2 2 96.81 97.03 94.82
6 2 1 2 1 96.77 96.87 92.83
7 2 2 1 1 97.23 94.79 91.29
8 2 2 1 2 97.28 95.68 93.17
Table 3  Results of orthogonal tests
Parameter A B C D
k1 94.54 95.13 95.97 95.24
k2 97.02 96.43 95.59 96.32
R 2.48 1.3 -0.38 1.08
Table 4  Factor analysis of scale inhibition rate
Parameter A B C D
k1 95.91 96.30 95.10 95.74
k2 96.09 95.71 96.90 96.27
R 0.18 -0.59 1.8 0.53
Table 5  Factor analysis of corrosion inhibition rate for A3 steel
Parameter A B C D
k1 92.91 92.85 92.16 91.98
k2 93.03 93.08 93.78 93.96
R 0.11 0.23 1.62 1.98
Table 6  Factor analysis of corrosion inhibition rate for T2 Cu
Fig.4  Variation of scale inhibition with dosage of HPMA
Fig.5  Variations of corrosion inhibition with dosage ofSLS
Fig.6  SEM images of the scales formed in water without (a) and with (b) compound agents
Fig.7  Metallographic micrographs of A3 (a, b) and T2 (c, d) coupons after corrosion in water without (a,c) and with (b, d) inhibitor
Types of specimen Corrosion rate / mma-1 Corrosion inhibition rate%
No inhibitor Inhibitor
A3 0.6155 0.0272 95.58%
T2 0.0311 0.0021 93.25%
Table 7  Corrosion rate and corrosion inhibition efficiency under the condition of complexformula
Fig.8  Polarization curves of A3 carbon steel (a) and T2 red copper (b)
Type of electrode Ecorr / mV bc ba Icorr / μAcm-2 η / %
A3-No inhibitor -499 3.191 6.136 16.67 ---
A3-With inhibitor -7 3.947 7.271 0.7787 95.33
T2-No inhibitor 1 3.422 9.174 8.264 ---
T2-With inhibitor 220 1.393 10.366 0.6822 91.74
Table 8  Parameters of polarization curves
[1] Wu S H, Li M D.Current situation and development of water treatment technology for the central air conditioning[J]. Refrigeration, 2004, 23(2): 34
[1] (吴淑焕, 李茂东. 中央空调水处理技术现状与发展[J]. 制冷, 2004, 23(2): 34)
[2] Luo H G, Shi R G.Chemical treatment in the central air conditioning water system[J]. Contami. Control Air-Cond. Technol., 2011, (2): 69
[2] (罗洪国, 石荣桂. 中央空调水系统的化学处理[J]. 洁净与空调技术, 2011, (2): 69)
[3] Ning S Q, Zhang H T.Research on the cooling water treatment in central air conditioning system[J]. China Sci. Technol. Inform., 2012, (1): 105
[3] (宁守庆, 张洪涛. 中央空调循环冷却水处理的研究[J]. 中国科技信息, 2012, (1): 105)
[4] Amjad Z.Effect of surfactants on gypsum scale inhibition by polymeric inhibitors[J]. Desalin. Water Treat., 2011, 36(1-3): 270
[5] Kuang Y F, Cheng F, Xie A.Molybdate- based corrosion inhibitor system for carbon steel in sea ice melt-water[J]. Desalin. Water Treat., 2013, 51(16-18): 3133
[6] Baraka-Lokmane S, Sorbie K, Poisson N, et al.Can green scale inhibitors replace phosphonate scale inhibitors: Carbonate coreflooding experi-ments[J]. Petrol. Sci. Technol., 2009, 27(4): 427
[7] GB16632-2008. Determination of scale inhibitor performance for water treatment agents - Calcium carbonate precipitation method[S]
[7] (GB16632-2008. 水处理剂阻垢性能的测定-碳酸钙沉积法[S])
[8] GB18175-2000. Determination of corrosion inhibitor performance water treatment agents-Rotary coupon method[S]
[8] (GB18175-2000. 水处理剂缓蚀性能的测定-旋转挂片法[S])
[9] Touir R, Cenoui M, El Bakri M, et al.Sodium gluconate as corrosion and scale inhibitor of ordinary steel in simulated cooling water[J]. Corros. Sci., 2008, 50(6): 1530
[10] Abd-El-Khalek D E, Abd-El-Nabey B A. Evaluation of sodium hexametaphosphate as scale and corrosion inhibitor in cooling water using electrochemical techniques[J]. Desalination, 2013, 311: 227
[11] Zhang Y F.Preparation and investigation on the inhibition performance of N-Laurel-L-Alanine [D]. Nanchang: Jiangxi University of Science and Technology, 2009
[11] (张燕芬. N-月桂酰基氨基酸类缓蚀剂的制备及其缓蚀性能研究[D]. 南昌: 江西理工大学, 2009)
[12] Guo X H, Wang K, Hu B S, et al.Research progress in corrosion inhibition mechanism of amino acids[J]. Corros. Sci. Prot. Technol., 2013, 25(1): 63
[12] (郭学辉, 王康, 胡百顺等. 氨基酸类缓蚀剂缓蚀机理研究进展[J]. 腐蚀科学与防护技术, 2013, 25(1): 63)
[13] Hu X J, Liu Z F, Wu X L, et al.Development and performances of environmentally friendly corrosion and scale inhibitor[J]. Water Treat. Technol., 2010, 36(3): 38
[13] (胡晓静, 刘振法, 武秀丽等. 环境友好型缓蚀阻垢剂的研制及性能研究[J]. 水处理技术, 2010, 36(3): 38)
[14] Zhou B Q, Xia H H, Ji X H, et al.Influence of surfactants of scale inhibition on HPMA[J]. Water Treat. Technol., 2006, 32(9): 73
[14] (周柏青, 夏桓桓, 姬晓慧等. 表面活性剂对HPMA阻垢分散性能的影响 [J]. 水处理技术, 2006, 32(9): 73)
[15] Shao Z B, Zhang L J, Gu Y T.Effect of surface active agent on performance of corrosion inhibition and scale prohibition of HPMA and ATMP[J]. Corros. Sci. Prot. Technol., 2001, 13(2): 112
[15] (邵忠宝, 张丽君, 顾玉涛. 表面活性剂对HPMA和ATMP缓蚀阻垢性能的影响[J]. 腐蚀科学与防护技术, 2001, 13(2): 112)
[16] Feng G N.Improvement of the evaluation method of scale inhibitor and influence of additives on process of CaCO3 precipitation [D]. Wuhan: Huazhong University of Science and Technology, 2005
[16] (冯改宁. 阻垢剂性能评价方法的改进以及添加剂对CaCO3结垢过程的影响 [D]. 武汉: 华中科技大学, 2005)
[17] Liu J H, Jiang E, Gong B, et al.Corrosion inhibition properties of TTA and phosphate on copper and stainless steel.[J]. Atom. Energy Sci. Technol., 2013, 47(12): 2195
[17] (刘金华, 姜峨, 龚宾等. 甲基苯骈三氮唑和磷酸钠对铜及不锈钢的缓蚀性能研究[J]. 原子能科学技术, 2013, 47(12): 2195)
[18] Liu J H, Gong B, Jiang E, et al.Research of electrochemistry behavior of corrosion inhibitor for KAA of Tianwan NPP.[J]. Nucl. Power Eng., 2013, 34(5): 160
[18] (刘金华, 龚宾, 姜峨等. 田湾核电站核岛设备冷却水系统缓蚀剂的电化学行为研究[J]. 核动力工程, 2013, 34(5): 160)
[19] Huang L J.The study of inhibitory capability and inhibitory mechanism of green copper corrosion inhibitor in seawater [D]. Qingdao: Ocean University of China, 2008
[19] (黄丽娟. 海水介质绿色铜缓蚀剂性能与机理的研究 [D]. 青岛: 中国海洋大学, 2008)
[20] Xia M Z, Lei W, Dai L H, et al.Study of the mechanism of phosphonate scale inhibitors against calcium carbonate scale[J]. Acta Chim. Sin., 2010, 68(2): 143
[20] (夏明珠, 雷武, 戴林宏等. 膦系阻垢剂对碳酸钙阻垢机理的研究[J]. 化学学报, 2010, 68(2): 143)
[21] Hu L C.Investigation on corrosion inhibition and mechanism of triazole compounds for copper in synthetic seawater [D]. Chongqing: Chongqing University, 2010
[21] (胡李超. 模拟海水中三氮唑类铜缓蚀剂的性能及机理研究 [D]. 重庆: 重庆大学, 2010)
No related articles found!
No Suggested Reading articles found!