Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (5): 426-432    DOI: 10.11902/1005.4537.2014.015
Current Issue | Archive | Adv Search |
Corrosion Behavior of Hot-dip Galvanized Steel for Power Transmission Tower in Simulated Acid Rain Atmospheric Environment
LIU Yuwei1, WANG Zhenyao1(), WANG Jun2, HU Botao2
1. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. Hunan Electric Power Corporation Research Institute, Changsha 410007, China
Download:  HTML  PDF(3370KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The evolution of corrosion process of hot-dip galvanized steel in a simulated acid rain atmospheric environment as a function of time was investigated by corrosion mass loss test, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) and electrochemical techniques.<br>Consequently, corrosion kinetics, the surface and cross-sectional morphology and composition as well as electrochemical characters of corrosion products were acquired. The influence of the rust layers on the atmospheric corrosion of hot-dip galvanized steel was studied. According to the corrosion kinetics the rust layers can well protect the hot-dip galvanized steel from corrosion. The results of electrochemical measurement further illustrate that the protective effect of the rust layers is firstly enhanced, and then weakened as the corrosion time increases.

Key words:  hot-dip galvanized steel      simulated acid rain      electrochemical technique      atmospheric corrosion     
ZTFLH:  TG172.3  
About author:  null

作者简介:刘雨薇,女,1990 年生,硕士生,研究方向为材料大气腐蚀

通讯作者:王振尧,E-mail:zhywang@imr.ac.cn

Cite this article: 

LIU Yuwei, WANG Zhenyao, WANG Jun, HU Botao. Corrosion Behavior of Hot-dip Galvanized Steel for Power Transmission Tower in Simulated Acid Rain Atmospheric Environment. Journal of Chinese Society for Corrosion and protection, 2014, 34(5): 426-432.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.015     OR     https://www.jcscp.org/EN/Y2014/V34/I5/426

Fig.1  Mass loss of hot-dip galvanized steel as a function of corrosion time
Fig.2  SEM images (a~e) of hot-dip galvanized steel after corrosion for 48 h (a), 84 h (b),132 h (c), 180 h (d) and 228 h (e) and EDS results of points 1 in Fig.2a and c (f) and point 2 in Fig.2c (g)
Fig.3  Cross sections of rust layer of hot-dip galvanized steel after corrosion for 48 h (a), 84 h (b), 132 h (c), 180 h (d) and 228 h (e)
Fig.4  Polarization curves of naked and rusted hot-dip galvanized steel as function of corrosion time
Fig.5  Nyquist plots of EIS results of hot-dip galvanized steel corroded for different time
Fig.6  Equivalent circuit
Corrosion
time / h
Rs / Ωcm-2 Q1 / Fcm-2 n1 Rct / Ωcm-2 Q2 / Fcm-2 n2 Rf / Ωcm-2
48 132.6 2.676×10-4 0.1970 1.501×104 3.012×10-5 0.6835 4636
84 109.6 2.103×10-4 0.2505 4.388×104 1.285×10-4 0.8595 759.8
132 145.6 2.070×10-4 0.4830 5.496×104 4.837×10-5 0.4717 1235
180 240.0 6.868×10-5 0.4541 4.591×104 1.002×10-5 0.7876 1619
228 167.1 6.364×10-5 0.5617 2.741×103 3.025×10-5 0.3221 429.8
Table 1  Fitted EIS parameters of hot-dip galvanized steel
Fig.7  EIS parameters of Rct and Q1 as function of corrosion time
[1] Bhatti N, Streets D G, Foell W K. Acid rain in asia[J]. J. Environ. Manage., 1992, 16(4): 541-562
[2] EI-Mahdy G A. Advanced laboratory study on the atmospheric corrosion of zinc under thin electrolyte layers[J]. Corrosion, 2003, 59(6): 505-510
[3] Cole I S, Ganther W D, Furman S A, et al. Pitting of zinc: Observations on atmospheric corrosion in tropical countries[J]. Corros. Sci.
2010, 52(3): 848-858
[4] Xu X H, Hao H W. Analysis of the distribution and causes of acid rain in southern china[J]. Sichuan Environ., 2011, 30(4): 135-139
(许新辉, 郜洪文. 中国南方酸雨的分布特征及其成因分析[J]. 四川环境, 2011, 30(4): 135-139)
[5] Zhang X Y, Han E-H, Li H X. Estimation of the corrosion losses by the acidic rain in China[J]. J. Chin. Soc. Corros. Prot., 2002, 22(5): 316-319
(张学元, 韩恩厚, 李洪锡. 中国的酸雨对材料腐蚀的经济损失估算[J]. 中国腐蚀与防护学报, 2002, 22(5): 316-319)
[6] Azmat N S, Ralston K D, Muddle B C, et al. Corrosion of Zn under fine size aerosols and droplets using inkjet printer deposition and optical profilometry quantification[J]. Corros. Sci., 2011, 53(11):1604-1615
[7] Thomas S, Birbilis N, Venkatraman M S, et al. Corrosion of zinc as a function of pH[J]. Corrosion, 2012, 68(1): 015009-1-9
[8] Yuan X J, Zhang J X, Zhang S M, et al. Corrosion behavior of galvanized steel for power transmission tower with breakage of zinc coating in polluted environment[J]. J. Chin. Soc. Corros. Prot., 2013, 33(5): 395-399
(原徐杰, 张俊喜, 张世明等. 镀锌层破损输电杆塔用镀锌钢在干湿交替作用下的腐蚀行为[J]. 中国腐蚀与防护学报, 2013, 33(5):395-399)
[9] Song Z, Guo J K, Guo J L. Analysis and evaluation of environment influence on network material corrosion[J]. Shanxi Electric. Power., 2008, 149(5): 7-9
(宋卓, 郭军科, 郭锦龙. 环境对电网材料的腐蚀影响分析及评价[J]. 山西电力, 2008, 149(5): 7-9)
[10] Me Z L, Cheng Z Y. Corrosion and prevention of zinc deposit of transmission towers[J]. Electric. Power. Constr., 2004, 25(1): 22-23
(默增禄, 程志云. 输电线路杆塔的腐蚀与防治对策[J]. 电力建设, 2004, 25(1): 22-23)
[11] Quintana P, Veleva L, Cauich W, et al. Study of the composition and morphology of initial stage of corrosion products formed on Zn plates exposed to the atmosphere of southeast mexico[J]. Appl. Surf. Sci., 1996, 99: 325-334
[12] Wang Z Y, Yu G C, Han W. Atmospheric corrosion performance of zinc at several selected test sits in China[J]. Corros. Sci. Prot. Technol., 2003, 15(4): 191-195
(王振尧, 于国才, 韩薇. 我国若干典型大气环境中的锌腐蚀[J].腐蚀科学与防护技术, 2003, 15(4): 191-195)
[13] Odnevall I. Atmospheric corrosion of field exposed zinc-a multianalytical characterization of corrosion products from initial films to fully developed layers[D]. Sweden: Royal Institute of Technology, 1994
[14] Almeida E. Atmospheric corrosion of zinc. Part I: Rural and urban atmospheres[J]. Br. Corros. J., 2000, 35(4): 284-288
[15] Almeida E. Atmospheric corrosion of zinc. Part II: Marine atmospheres[J]. Br. Corros. J., 2000, 35(4): 289-296
[16] Odnevall I, Leygraf C. Formation of Zn4SO4(OH)64H2O in a rural atmosphere[J]. Corros. Sci., 1994, 36(6): 1077-1091
[17] Odnevall I, Leygraf C. Formation of NaZn2Cl(OH)6SO46H2O in a marine atmosphere[J]. Corros. Sci., 1993, 34(7): 1213-1229
[18] Shu D X, Yang X R, Luo Y. Study of Zn corrosion in tropic marine atmosphere[J]. Equip. Environ. Eng., 2007, 4(3): 45-48
(舒德学, 杨晓然, 罗勇. 纯锌在热带海洋环境下的大气腐蚀行为及规律[J]. 装备环境工程, 2007, 4(3): 45-48)
[19] Azmat N S, Ralston K D, Muddle B C, et al. Corrosion of Zn under acidified marine droplets[J]. Corros. Sci., 2011, 53: 1604-1615
[20] Yan C W, Shi Z M, Lin H C, et al. Laboratory investigation of the initially corroded zinc surfaces in air containing SO2[J]. Corros. Sci. Prot. Technol., 2000, 12(3): 151-153
(严川伟. 史志明. 林海潮等. Zn在SO2环境中大气腐蚀初期表面特性研究[J]. 腐蚀科学与防护技术, 2000, 12(3): 151-153)
[21] Wang S M. Progress in atmospheric exposure and laboratory-accelerated corrosion tests and their correlation of zinc and zinc coatings[J]. Total. Corros. Control., 2004, 18(4): 10-13
(王绍明. 锌及锌覆盖层户外大气暴露与实验室加速腐蚀试验及其相关性的研究进展[J]. 全面腐蚀控制, 2004, 18(4): 10-13)
[22] Wang Z Y, Yu G C, Zheng Y P, et al. Investigation on interrelation of accelerated corrosion testing and atmospheric exposure of zinc[J]. J. Chin. Soc. Corros. Prot., 2001, 19(4): 239-244
(王振尧, 于国才, 郑逸苹等. 锌的加速腐蚀与大气暴露腐蚀的相关性研究[J]. 中国腐蚀与防护学报, 2001, 19(4): 239-244)
[23] Wang S M, Xiao Y D, Zhang S P. SO2/Salt-spray synergistic accelerate test simulating atmospheric exposure corrosion on behavior of zinc[J]. Corros. Sci. Prot. Technol., 2005, 26(1): 13-17
(王绍明, 萧以德, 张三平. SO2/盐雾复合循环加速腐蚀试验模拟锌在户外大气暴露腐蚀行为[J]. 腐蚀科学与防护技术, 2005, 26(1): 13-17)
[24] An B G, Zhang X Y, Han E-H, et al. Corrosion of zinc in simulated acid rain solution and under thin electrolyte layer formation by simulated acid rain solution.[J]. Acta. Metall. Sin., 2004, 40: 202-206
(安百刚, 张学元, 韩恩厚等. Zn在模拟酸雨溶液中及其液膜下的腐蚀[J]. 金属学报, 2004, 40: 202-206)
[25] Shin'ichi M, Masayasu S, Kazuharu S, et al. Zinc corrosion in simulated acid rain[J]. Electrochim. Acta, 1999, 44: 4307-4312
[26] Zin I M, Howard R L, Badger S J, et al. The mode of action of chromate inhibitor in epoxy primer on galvanized steel[J]. Prog. Org. Coat., 1998, 33: 203-210
[27] Li X M, Liu Q, Kong L F, et al. Corrosion behavior of galvanized steel under stress in simulated acid rain solution[J]. Corros. Sci. Prot. Technol., 2008, 20(1): 44-46
(黎学明, 刘强, 孔令峰等. 模拟酸雨溶液中应力对镀锌钢绞线腐蚀行为影响[J]. 腐蚀科学与防护技术, 2008, 20(1): 44-46
[28] GB/T 16545—1996. Corrosion of metals and alloys—Removal of corrosion products from corrosion test specimensB/T 16545—1996. Corrosion of metals and alloys—Removal of corrosion products from corrosion test specimens[S]
GB/T 16545—1996. 金属与合金的腐蚀—腐蚀试样上腐蚀产物的清除B/T 16545—1996. 金属与合金的腐蚀—腐蚀试样上腐蚀产物的清除[S]
[29] Sun S Q, Zheng Q F, Li D F, et al. Long-term atmospheric corrosion behavior of aluminium alloys 2024 and 7075 in urban, coastal and industrial environments[J]. Corros. Sci., 2009, 51(4): 719-727
[30] Natesan M, Venkatachari G, Palaniswamy N. Kinetics of atmospheric corrosion of mild steel, zinc, galvanized iron and aluminium at 10 exposure stations in India[J]. Corros. Sci., 2006, 48(11): 3584-3608
[31] Syed S. Influence of the environment on atmospheric corrosion of aluminium[J]. Corros. Eng. Sci. Technol., 2010, 45(4): 282-287
[32] Azmat N S, Ralston K D, Muddle B C. Corrosion of Zn under acidified marine droplets[J]. Corros. Sci., 2011, 53: 1604-1615
[33] Biestek H. Atmospheric Corrosion Testing of Electrodeposited Zinc and Cadmium Coatings, in Atmospheric Corrosion [M]. New York: John Wiley & Sons, 1982
[34] Op't hoog C, Birbilis N, Estrin Y. Corrosion of pure Mg as a function of grain size and processing route[J]. Adv. Eng. Mater., 2008, 6: 579-582
[35] Stern M, Geary A L. Electrochemical polarization: I. A theoretical analysis of the shape of polarization curves[J]. J. Electrochem. Soc., 1957, 104: 56-63
[36] Cao C N. Principles of Electrochemistry of Corrosion[M]. Beijing: Chemical Industry Press, 2008
(曹楚南. 腐蚀电化学原理[M]. 北京: 化学工业出版社, 2008)
[37] Svensson J E, Johansson L G. A laboratory study of the initial stages of the atmospheric corrosion of zinc oin the presence of NaCl,inflrence of SO2 and NO2[J]. Corros. Sci., 1993, 34(5): 721-738
[1] FAN Yi,CHEN Linheng,CAI Jiaxing,DAi Qinqin,MA Hongchi,CHENG Xuequn. Corrosion Behavior of Hot-rolled AH36 Plate in Indoor Storage Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[2] PAN Chengcheng,MA Chao,XIA Dahai. Estimation for Relevance of Atmospheric Corrosion Initiation with Surface Texture of Several Metallic Materials by Electron Backscattering Diffraction[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[3] ZHAO Jinbin,ZHAO Qiyue,CHEN Linheng,HUANG Yunhua,CHENG Xuequn,LI Xiaogang. Effect of Different Surface Treatments on Corrosion Behavior of 300M Steel in Qingdao Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[4] DENG Junhao,HU Jiezhen,DENG Peichang,WANG Gui,WU Jingquan,WANG Kun. Effect of Oxide Scales on Initial Corrosion Behavior of SPHC Hot Rolled Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[5] Yongwei SUN,Yuping ZHONG,Lingshui WANG,Fangxiong FAN,Yatao CHEN. Corrosion Behavior of Low-alloy High Strength Steels in a Simulated Common SO2-containing Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[6] Li WANG, Chunyun GUO, Kui XIAO, Tuerxun·Silayiding, Chaofang DONG, Xiaogang LI. Corrosion Behavior of Carbon Steels Q235 and Q450 in Dry Hot Atmosphere at Turpan District for Four Years[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[7] Yunxiang CHEN, Lijuan FENG, Jianbin CAI, Xuan WANG, Yicheng HONG, Deyuan LIN, Jianhuang ZHUANG, Huaiyu YANG. Inhibition Effect of a New Composite Organic Inhibitor on Corrosion of Steel Rebar in Simulated Concrete Solution or Inside Mortar Specimen[J]. 中国腐蚀与防护学报, 2018, 38(4): 343-350.
[8] Shuaixing WANG, Nan DU, Daoxin LIU, Jinhua XIAO, Danping DENG. Influence of Soil Water Content Adjusted by Simulated Acid Rain on Corrosion Behavior of X80 Steel in Red Soil[J]. 中国腐蚀与防护学报, 2018, 38(2): 147-157.
[9] Jun WANG, Chao FENG, Bicao PENG, Yi XIE, Minghua ZHANG, Tangqing WU. Corrosion Behavior of Weld Joint of S450EW Steel in NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[10] Xinxin ZHANG,Zhiming GAO,Wenbin HU,Zhipeng WU,Lianheng HAN,Lihua LU,Yan XIU,Dahai XIA. Correlation Between Corrosion Behavior and Image Information of Q235 Steel Beneath Thin Electrolyte Film[J]. 中国腐蚀与防护学报, 2017, 37(5): 444-450.
[11] Xin ZHANG,Nianwei DAI,Yan YANG,Junxi ZHANG. Effect of Direct Current Electric Field on Corrosion Mechanism of Zn Exposed to Simulated Industrial Environment[J]. 中国腐蚀与防护学报, 2017, 37(5): 451-459.
[12] Xiaobo MENG,Wubin JIANG,Yongli LIAO,Ruihai LI,Zhijun ZHENG,Yan GAO. Investigation on Atmospheric Corrosion Behavior of Transmission Tower Materials in Simulated Industrial Environments[J]. 中国腐蚀与防护学报, 2017, 37(5): 460-466.
[13] Jiejing CHEN,Hong JU,Can SUN,Xia LI,Yunfei LIU. Application of Electrochemical Testing Technology for Corrosion Under-deposits[J]. 中国腐蚀与防护学报, 2017, 37(3): 207-215.
[14] Shuangqing SUN,Qifei ZHENG,Chunling LI,Xiumin WANG,Songqing HU. Effect of Corrosion Products on Long-term Atmospheric Corrosion of Pure Aluminum 8A06[J]. 中国腐蚀与防护学报, 2017, 37(2): 110-116.
[15] Ziheng BAI,Yunhua HUANG,Xiaogang LI,Lang YANG,Chaofang DONG,Lidan YAN,Kui XIAO. Environmental Corrosion in Industrial-marine Atmosphere at Qingdao of 7050 Al-alloy Anodized in Boric- and Sulfuric-acid Electrolyte[J]. 中国腐蚀与防护学报, 2016, 36(6): 580-586.
No Suggested Reading articles found!