中国腐蚀与防护学报, 2025, 45(5): 1390-1398 DOI: 10.11902/1005.4537.2024.391

研究报告

高温高CO2 压力下低合金钢P110SS在氯盐和甲酸盐溶液中腐蚀行为对比研究

罗铸1, 刘佳乐2,3, 魏安超1, 黄洪林1, 李鑫1, 于延钊,2,3, 张梦飞2,3

1 中海石油(中国)有限公司海南分公司 海口 570100

2 中国石油大学(北京) 北京 102249

3 油气装备材料失效与腐蚀防护北京市重点实验室 北京 102249

Corrosion Behavior of Low Alloy Steel P110SS in Chloride and Formate Solutions at High Temperature and High CO2 Pressure

LUO Zhu1, LIU Jiale2,3, WEI Anchao1, HUANG Honglin1, LI Xin1, YU Yanzhao,2,3, ZHANG Mengfei2,3

1 Hainan Branch, CNOOC (China) Corporation Limitded, Haikou 570100, China

2 China University of Petroleum (Beijing), Beijing 102249, China

3 Beijing Key Laboratory of Material Failure and Corrosion Protection for Oil and Gas Equipment, Beijing 102249, China

通讯作者: 于延钊,E-mail:yuyanzhao0328@126.com.cn,研究方向为油气田腐蚀与防护

收稿日期: 2024-09-11   修回日期: 2025-02-19  

基金资助: 中海油集团公司“十四五”重大科技项目.  KJGG2021-0800

Corresponding authors: YU Yanzhao, E-mail:yuyanzhao0328@126.com.cn

Received: 2024-09-11   Revised: 2025-02-19  

Fund supported: CNOOC Group Company "14th Five-Year" Major Science and Technology Project.  KJGG2021-0800

作者简介 About authors

罗铸,男,1992年生,工程师

摘要

研究了高温高CO2压力下低合金钢P110SS分别在NaCl溶液和HCOOK溶液中的腐蚀行为,采用扫描电镜(SEM)、激光扫描共聚焦(CLSM)、X射线衍射仪(XRD)和透射电镜(TEM)等手段分析腐蚀产物的微观形貌、类型和生长形态等。结果表明:当处于相同CO2压力的HCOOK溶液中时,150 ℃时P110SS钢的腐蚀速率是NaCl溶液中的10.6倍,180 ℃时为3.3倍。两种环境下的腐蚀产物存在明显差异。NaCl溶液中形成的FeCO3为菱形块状,无明确的生长优势方向,在基体表面致密堆积,保护性较好。HCOOK溶液中的FeCO3则呈“花簇”状,“花枝”由三片“羽片”沿“羽轴”向外生长,均匀分布,优势生长面为(018)、(116)和(0012),由于结构松散,保护性差,腐蚀速率较高。

关键词: 甲酸钾 ; FeCO3腐蚀产物 ; 微观形貌 ; 优势生长面

Abstract

The corrosion behavior of low alloy steel P110SS in NaCl and HCOOK solutions in high temperature and high-pressure CO2 atmospheres is studied via high temperature and high-pressure autoclave. While the corrosion morphology and corrosion type, the composition and phase constituents of corrosion products were characterized by means of scanning electron microscopy (SEM), confocal laser scanning microscope (CLSM), X-ray diffractometer (XRD), and transmission electron microscopy (TEM). The results show that when setting the same CO2 pressure, the corrosion rate of P110SS in HCOOK solution at 150 ℃ is 10.6 times that in NaCl solution and 3.3 times at 180 ℃. There are obvious differences in the corrosion products of P110SS in the two solutions. The final corrosion product formed in NaCl solution is FeCO3, which has a rhombic block crystal morphology, no clear dominant growth direction, and is densely accumulated on the substrate surface. Therefore, it has a good ability to protect the substrate from further corrosion. The final corrosion product formed in the HCOOK solution is FeCO3, but the difference is that its crystal morphology is in the shape of a "flower cluster", in which the "flower branches" are evenly distributed from three "pinnae" growing outward along the "pinnae axis", with dominant growth planes of (018), (116), and (0012). However, the corrosion scale has a loose structure, so the protection is poor and the corrosion rate is high.

Keywords: potassium carbonate ; FeCO3 corrosion product ; microstructure ; dominant growth surface

PDF (2870KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

罗铸, 刘佳乐, 魏安超, 黄洪林, 李鑫, 于延钊, 张梦飞. 高温高CO2 压力下低合金钢P110SS在氯盐和甲酸盐溶液中腐蚀行为对比研究. 中国腐蚀与防护学报[J], 2025, 45(5): 1390-1398 DOI:10.11902/1005.4537.2024.391

LUO Zhu, LIU Jiale, WEI Anchao, HUANG Honglin, LI Xin, YU Yanzhao, ZHANG Mengfei. Corrosion Behavior of Low Alloy Steel P110SS in Chloride and Formate Solutions at High Temperature and High CO2 Pressure. Journal of Chinese Society for Corrosion and Protection[J], 2025, 45(5): 1390-1398 DOI:10.11902/1005.4537.2024.391

低合金钢P110SS广泛应用于油气田生产中,在超深高温高压环境中的腐蚀行为受温度、腐蚀气体含量、矿化度和压力等多种因素影响[1~6]。实际生产中,人们通常会在油套环空中加入高密度无机盐[7~11]或甲酸盐完井液[12~14]以达到防腐和平衡地层压力的目的,相关腐蚀机理的研究一直备受关注[15~19]。在超高温(210 ℃)及CO2侵入情况下,P110S钢在氯盐水中存在明显的局部腐蚀问题[20~22],腐蚀速率会明显提高且有局部腐蚀风险,腐蚀产物发生由Fe3O4到FeCO3的转变,这与生产水中的腐蚀机制十分类似[23]

甲酸盐溶液因其高比重、低成本的特点,广泛用于环空保护液。然而在超高温超高压环境中,CO2与H2S等酸性介质渗入到油套环空,甲酸盐高温分解,会进一步引发材料发生严重腐蚀。目前,针对钢材在甲酸盐中的腐蚀行为已有不少相关研究[24]。比较一致的看法是,在甲酸盐环境下CO2会加速腐蚀。研究表明,在不高于80 ℃,有CO2渗入条件下,C110管柱腐蚀速率明显升高[25]。不锈钢在甲酸盐环境下也表现出相同的特点[26~29]。在180 ℃下,超级13Cr在甲酸盐流体中外层检测到“片状”碳酸铁(FeCO3)的析出,CO2起到加速腐蚀的作用[30]。近年来的研究表明,材料的腐蚀特点通常与其表面形成的腐蚀产物有关,腐蚀性离子在不同晶型的腐蚀产物膜中的扩散迁移能力不同,从而对腐蚀造成影响不同[31]。目前对于甲酸盐环境下的腐蚀产物特征研究仍有诸多不足,因此,研究材料在甲酸盐环境下形成的腐蚀产物特征,对于进一步理解对应的腐蚀机制具有重要意义。

基于此,本文对低合金钢P110SS分别在NaCl和HCOOK溶液两种环境下的腐蚀行为及腐蚀产物特征进行研究。通过模拟高温高CO2压力完井液环境,对比低合金钢P110SS在甲酸盐与无机盐工况下的腐蚀行为差异,进而揭示低合金钢P110SS在HCOOK完井液环境中的腐蚀机理。在本研究中,通过SEM、XRD和TEM等手段观察对比分析了低合金钢在P110SS在NaCl和HCOOK溶液中形成的腐蚀产物差异,为澄清低合金钢在不同完井液中存在腐蚀差异的原因提供了新思路,也为低合金钢在油气田开发中的腐蚀防护提供了一定理论基础。

1 实验方法

实验材料为抗硫低合金钢P110SS油套管钢,其化学成分(质量分数,%)为:C 0.26,Cr 0.49,Ni 0.26,Mo 0.6,Mn 0.6,Si 0.26,S 0.003,P 0.01,Ti 0.02,Nb 0.005,V 0.005,余量为Fe。显微组织为回火索氏体。试样尺寸50 mm × 10 mm × 3 mm,距离试样一端3 mm处,开一直径6 mm的通孔,用于悬挂试样。在实验开始前,将试样分别做好标记,依次通过200#、400#、800#的耐水砂纸进行打磨处理,之后使用去离子水冲洗和乙醇脱水,最后冷风干燥。使用游标卡尺(精确度为0.01 mm)量取试样尺寸和电子天平(精确度为0.1 mg)称取样品质量。腐蚀介质为实验室配制的质量浓度1.15 g/mL NaCl溶液和质量浓度为1.25 g/mL HCOOK溶液。

腐蚀失重实验在高温高压反应釜中进行,实验参照GB10124-88进行设计。实验前,将处理好的P110SS钢试样分别与NaCl溶液和HCOOK溶液装入釜内后密封,通高纯氮气除氧2 h,升温至设定温度后,通入CO2气体到设定压力10 MPa,实验温度分别为150和180 ℃,浸泡5 d,以模拟工况环境。实验完成后,取出试样,酸洗除去试样表面腐蚀产物,酸洗液由100 mL盐酸(质量浓度1.19 g/mL),900 mL去离子水和5 g六次甲基四胺配置而成。随后用去离子水冲洗,并用酒精脱水。冷风吹干后称重,通过 式(1)计算平均腐蚀速率Vc

Vc=8.76×104m1-m2Sρt

式中,Vc为平均腐蚀速率,mm·a-1m1m2为实验前后试样的质量,g;S为试样的总面积,cm2ρ为试样的密度,对P110SS钢取7.85 g/cm3t为实验时间,h。采用FEI Quanta 200F型场发射环境扫描电镜(SEM)观察反应后挂片表面的腐蚀产物形貌及腐蚀产物的分层情况,使用配套能谱仪(EDS)对腐蚀产物成分进行元素分析。使用LEXT OLS4100型激光共聚焦扫描显微镜(CLSM)测量点蚀坑深,通过Bruker D8 Focus型X射线衍射仪(XRD)标定腐蚀产物的物相组成,使用JEM 2100F LaB6型透射电镜(TEM)观察腐蚀产物优势生长面。

2 结果与讨论

2.1 腐蚀速率变化规律

图1为P110SS钢在温度为150和180 ℃的NaCl和HCOOK溶液中的腐蚀速率柱状图。可以看出,NaCl溶液中P110SS钢的腐蚀速率为1.54 mm/a左右,这符合低合金钢在高温含CO2环境下的腐蚀特征。然而,在HCOOK溶液中P110SS钢在150 ℃时腐蚀速率达到16.27 mm/a,是相同条件下NaCl溶液的10.6倍,这说明溶液环境的改变使材料的腐蚀特点发生显著变化。温度达到180 ℃时,腐蚀速率明显降低,为4.96 mm/a,是NaCl溶液条件的3.3倍。一般而言,温度升高对反应动力学起加速作用,出现腐蚀速率随温度升高而降低的现象,一方面是因为腐蚀性气体溶解度降低,导致H+浓度降低[32],阴极去极化作用减弱。也可能是腐蚀产物对钢材保护性提高所致[33]

图1

图1   P110SS钢在不同温度、不同溶液中浸泡5 d后的腐蚀速率

Fig.1   Corrosion rates of P110SS steel after immersion for 5 d under the different conditions of solution and temperature


2.2 微观形貌

图2为试样表面腐蚀产物微观形貌,其中图2ab为P110SS钢在150和180 ℃下NaCl溶液中形成的腐蚀产物微观形貌图。腐蚀产物多为不规则菱形块状颗粒,150 ℃条件下的块状腐蚀产物大于180 ℃。180 ℃下形成的腐蚀产物由内层向外层生长。图2cd为HCOOK溶液中形成的腐蚀产物微观形貌图,腐蚀产物形态与NaCl溶液中明显不同,在150和180 ℃下整体呈“花簇”状,每一个“花枝”呈针状结构,这进一步说明导致腐蚀速率变化的关键因素是腐蚀产物。

图2

图2   P110SS钢在不同温度、不同溶液中浸泡5 d后的SEM图

Fig.2   SEM surface images of P110SS steel after 5 d immersion in NaCl solution (a, b) and HCOOK solution (c, d) at 150 ℃ (a, c) and 180 ℃ (b, d)


图3为试样去除腐蚀产物后的表面微观形貌,其中图3ab为150和180 ℃条件下NaCl溶液中试样表面的微观形貌图。可以看出,试样表面出现不同程度的局部腐蚀特征。腐蚀坑大小约为50~100 μm,形状与腐蚀产物基本一致,呈菱形块状,如图3ab中红色标注所示。图3cd为P110SS钢在150和180 ℃下HCOOK溶液中实验后去除腐蚀产物的微观形貌图。试样表面也发生了明显的局部腐蚀,与在NaCl溶液中相似,腐蚀坑在腐蚀产物覆盖位置形成。HCOOK溶液中的腐蚀坑多呈圆形,如图3cd中红色虚线标注所示。不同的是,NaCl溶液中形成的点蚀坑主要与腐蚀产物的脱落和小半径Cl-的穿透作用有关,而HCOOK溶液中形成的点蚀坑又产生了多个小点蚀坑,这可能是由于腐蚀过程十分剧烈,在较大“花簇”下的基体表面形成了小型“花簇”,进而继续加剧了基体的点蚀。通过对比研究,可以确定P110S钢的腐蚀特征与其腐蚀产物的生长形态存在一定相关性。

图3

图3   P110SS钢在不同温度、不同溶液中浸泡5 d后去除腐蚀产物后的SEM图

Fig.3   SEM images of P110SS steel after removal of corrosion products formed during 5 d immersion in NaCl solution (a, b) and HCOOK solution (c, d) at 150 ℃ (a, c) and 180 ℃ (b, d)


去除腐蚀产物后试样的CLSM扫描观察照片,测量不同溶液环境下形成的最大点蚀坑深度,结果如图4所示。图4ab分别为150和180 ℃条件下NaCl溶液中形成的点蚀坑形貌,最大点蚀坑深度分别为101.419和51.217 μm。图4cd分别为150和180 ℃条件下HCOOK溶液中形成的点蚀坑形貌,最大点蚀坑深度分别为73.970和38.221 μm。可以看出,相同温度下NaCl溶液中形成的点蚀坑深度大于HCOOK溶液。由此可见,虽然P110SS钢在HCOOK溶液中会发生严重的均匀腐蚀,但其局部腐蚀的程度低于NaCl溶液,这可能与NaCl溶液中存在大量Cl-有关[34]

图4

图4   P110SS钢在不同温度、不同溶液中浸泡5 d后去除腐蚀产物后的CLSM图

Fig.4   CLSM surface images of P110SS steel after removal of corrosion products formed during 5 d immersion in NaCl solution (a, b) and HCOOK solution (c, d) at 150 ℃ (a, c) and 180 ℃ (b, d)


2.3 腐蚀产物截面分析

为进一步分析高温下低合金钢P110SS在NaCl溶液和HCOOK溶液中腐蚀行为存在差异的原因,对腐蚀试样的横截面进行观察,标定了腐蚀产物的元素组成和晶体类型,结果如图5所示。

图5

图5   P110SS钢在不同温度、不同溶液中浸泡5 d后的截面SEM像

Fig.5   SEM cross-sectional images and EDS element mappings for P110SS steel immersed for 5 d in NaCl solution (a-d) and HCOOK solution (e-h) at 150 ℃ (a, b, e, f) and 180 ℃ (c, d, g, h)


图5ab分别为NaCl溶液中150和180 ℃下腐蚀产物膜的横截面图。可以看出,腐蚀产物层均有Fe、C和O元素,推测腐蚀产物主要为FeCO3。NaCl溶液中腐蚀产物层的平均厚度约为19.1 μm,两种温度下测量厚度差别不大。图5cd分别为低合金钢P110SS钢在150和180 ℃下HCOOK溶液中的腐蚀产物膜横截面图。腐蚀产物层同样为Fe、C和O元素,但腐蚀产物层明显厚于NaCl溶液,150 ℃腐蚀产物层平均厚度约为200.5 μm,180 ℃条件下为183.1 μm。结合腐蚀速率的结果(图1),说明在HCOOK溶液中形成的腐蚀产物对基体保护性较差。同时,在NaCl溶液腐蚀环境下的点蚀坑底部观察到有Cl-富集,而在HCOOK溶液中则未观察到相应特征,这也解释了图4中NaCl溶液腐蚀环境下局部腐蚀更严重的原因。

2.4 腐蚀产物XRD分析

对4种条件下腐蚀试样进行XRD测试分析,结果如图6所示。4种环境下的腐蚀产物通过标准PDF卡片比对,可以确定均为FeCO3,腐蚀产物类型没有发生转变。在NaCl溶液中,还观察到较明显Fe的衍射峰,表明腐蚀产物层较薄,或者腐蚀产物局部区域脱落,印证了图1中腐蚀速率较低的结果。值得注意的是,与NaCl溶液相比,HCOOK溶液中形成的腐蚀产物在(018)、(116)和(0012) 3个晶面上的衍射峰强度明显增强,说明腐蚀产物晶体的生长面可能发生了转变,出现了特征取向。

图6

图6   P110SS钢在不同温度、不同溶液中浸泡5 d后腐蚀产物的XRD谱

Fig.6   XRD patterns of P110SS steel after 5 d immersion under the different conditions of solution and temperature


2.5 腐蚀产物TEM分析

在150 ℃ NaCl溶液和180 ℃ HCOOK溶液中形成的腐蚀产物TEM分析结果如图7所示。图7a为NaCl溶液环境下生成的FeCO3明场像,可以看出,NaCl溶液中形成的FeCO3在透射电镜下呈现菱形块状,与图2中扫描电镜观察到的形态一致。图7b的为电子束从腐蚀产物FeCO3晶体六方结构菱铁矿[164¯1¯]晶带轴入射时获得的衍射花样。结合样品位向分析,可知NaCl溶液中形成的FeCO3没有明确的生长方向。图7c为HCOOK溶液环境下生成的FeCO3明场像,可以看出,“羽毛”状的FeCO3呈现中间厚,两边薄的特征。与扫描电镜下的形貌结合,侧面的“羽片”围绕“羽轴”沿3个方向生长。图7d为电子束从[1¯10]方向入射时的电子衍射花样,通过衍射斑点的标定确定HCOOK溶液中形成的FeCO3的生长优势面为(003)晶面,沿[001]方向定向生长,该结果验证了腐蚀产物XRD的结果。

图7

图7   P110SS钢在150 ℃下NaCl、180 ℃下HCOOK溶液中浸泡5 d后腐蚀产物的TEM图和选区电子衍射

Fig.7   TEM images and selected-area diffraction patterns of the corrosion products formed on P110SS steel after 5 d immersion at 150 ℃ in NaCl solution (a, b) and at 180 ℃ in HCOOK solution (c, d)


2.6 讨论

材料在有机盐溶液中腐蚀的阴极反应为典型阴极去极化过程[35~38]。CO2溶解于水中,与水分子结合反应形成H2CO3,随后电离出H+、HCO3-和CO32-,H+得电子形成H原子,再结合形成H2。其反应过程如式(2)~(7)所示:

CO2(g)CO2(aq)
CO2(aq)+H2OH2CO3
H2CO3H++HCO3-
HCO3-H++CO32-
H2OH++OH-
2H++2e-H2

腐蚀的阳极反应为Fe氧化为Fe2+,随后与CO32-结合生成FeCO3,附着在基体表面,从而对腐蚀反应起到隔绝阻碍的作用,其反应过程式如 式(8)和(9)所示:

FeFe2++2e-
Fe2++CO32-FeCO3

尽管P110SS钢在NaCl溶液和HCOOK溶液中腐蚀的阴阳极反应相似,但在不同溶液下的腐蚀速率及腐蚀产物形态上存在显著差异。这是因为HCOOK属于强碱弱酸盐,其水溶液呈弱碱性。H2CO3在碱性环境下的电离加剧,促进了CO2的进一步溶解。与在NaCl溶液中Fe2+与CO32-或HCO3-反应直接形成FeCO3不同,HCOOK溶液中大量的HCOO-也会与Fe2+反应,结合形成过渡态的Fe(HCOO)2。而可自由电离的Fe(HCOO)2性质并不稳定,会与溶解于水中的CO32-置换形成FeCO3沉淀,反应过程如式(10)~(13)所示:

Fe2++HCO3-FeCO3+H+
Fe2++CO32-FeCO3
Fe2++2HCOO-Fe(HCOO)2(aq)
Fe(HCOO)2(aq)+CO32-FeCO3(s)+2HCOO-

P110SS钢在NaCl和HCOOK溶液中的腐蚀机理示意图如图8ab所示。根据腐蚀产物截面形貌(图5)可以看出,HCOOK溶液腐蚀环境下形成的内层腐蚀产物膜更厚,然而腐蚀速率却显著升高。且TEM观测结果表明,这种以中间产物置换形成的FeCO3沿[001]方向定向生长,形成以(003)晶面为优势生长晶面的三棱柱结构。相比于在NaCl溶液中形成的无择优取向的FeCO3,这种结构的腐蚀产物有利于Fe2+、HCOO-、CO32-等离子的扩散迁移,削弱了对介质传递过程的阻碍作用,从而加速了基体的溶解。此外,在相同溶液环境下,温度从150 ℃升高至180 ℃时,CO2在水中的溶解度降低,溶液中的H+浓度降低,不利于腐蚀的进一步进行,因此两种溶液条件下腐蚀速率随温度升高均呈下降趋势。

图8

图8   P110SS钢在含CO2的NaCl溶液和HCOOK溶液中的腐蚀产物膜结构示意图

Fig.8   Schematic diagrams of the microstructures of corrosion product films formed on P110SS steel during immersion in CO2-containing NaCl solution (a) and HCOOK solution (b)


3 结论

(1) 高温高压CO2条件下,P110SS钢在HCOOK溶液中的腐蚀速率是NaCl溶液中的3~10倍,两种环境中形成的腐蚀产物形态存在显著差异。

(2) 与NaCl溶液中形成的腐蚀产物相比,材料在HCOOK溶液中形成的FeCO3在元素组合和晶体类型上无显著差异,但XRD结果表明,在(018)、(116)和(0012)3个晶面上的衍射峰强度明显增强。

(3) NaCl溶液中形成的FeCO3腐蚀产物呈菱形块状,无明显的优势生长面和生长方向。HCOOK溶液中形成的腐蚀产物则呈“羽毛”状堆积在基体表面,沿[001]方向定向生长,其优势生长面为(003)晶面。不同环境下腐蚀速率的差异可能与腐蚀产物对传质过程阻碍能力不同有关。

参考文献

Zhao G X, Yan M L, Lu M X, et al.

Advances in research of CO2 corrosion in oil and gas industry

[J]. Corros. Prot., 1988, 19: 51

[本文引用: 1]

赵国仙, 严密林, 路民旭 .

石油天然气工业中CO2腐蚀的研究进展

[J]. 腐蚀与防护, 1988, 19: 51

[本文引用: 1]

Nešić S.

Key issues related to modelling of internal corrosion of oil and gas pipelines-A review

[J]. Corros. Sci., 2007, 49: 4308

De Waard C, Milliams D E.

Carbonic acid corrosion of steel

[J]. Corrosion, 1975, 31: 177

Chen C F.

Research on electrochemical behavior and corrosion scale characteristics of CO2 corrosion for tubing and casing steel

[D]. Xi'an: Northwestern Polytechnical University, 2002

陈长风.

油套管钢CO2腐蚀电化学行为与腐蚀产物膜特性研究

[D]. 西安: 西北工业大学, 2002

Wan H X, Liu C L, Wang Z A, et al.

Corrosion behavior of P110S oil casing steel in sulfur containing environment

[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 371

万红霞, 刘重麟, 王子安 .

P110S油套管在微含硫环境中的腐蚀行为研究

[J]. 中国腐蚀与防护学报, 2023, 43: 371

DOI     

采用不同含量的Na<sub>2</sub>S来模拟不同的含硫环境,利用挂片浸泡实验研究P110S钢级油套管在含硫体系中的腐蚀行为;利用电化学测试研究了其在不同含硫浓度中电化学特征;利用扫描电镜、激光共聚焦、XRD以及拉曼光谱对样品表面的腐蚀产物和形貌进行了表征。结果表明,P110S钢级油套管钢在含硫体系中发生严重的腐蚀,腐蚀速率和腐蚀电流密度均随含硫浓度增大而增大,腐蚀类型由均匀腐蚀转变为点蚀,腐蚀产物疏松。

Xing X S, Fan B T, Zhu X Y, et al.

Corrosion characteristics of P110SS casing steel for ultra-deep well in artificial formation water with low H2S and high CO2 content

[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 611

[本文引用: 1]

幸雪松, 范白涛, 朱新宇 .

低H2S和高CO2分压下超深井用P110SS油套管钢腐蚀特征研究

[J]. 中国腐蚀与防护学报, 2023, 43: 611

DOI      [本文引用: 1]

研究了P110SS钢在含低硫化氢油气井下腐蚀规律及特征。通过高温高压反应釜模拟超深井的腐蚀工况,对P110SS钢在不同温度、H<sub>2</sub>S、CO<sub>2</sub>分压条件下进行浸泡实验,通过腐蚀失重计算其腐蚀速率,辅以SEM、EDS和XRD等手段对腐蚀产物的形貌和成分进行表征。结果表明,H<sub>2</sub>S、CO<sub>2</sub>分压增大均会导致P110SS的腐蚀速率增大;然而温度升高却降低其腐蚀速率。分析腐蚀产物可见,H<sub>2</sub>S、CO<sub>2</sub>浓度和温度的变化均会导致腐蚀产物成分和结构发生转变。说明在高温高压条件下,H<sub>2</sub>S腐蚀起主导作用,Fe<sub>7</sub>S<sub>8</sub>腐蚀产物对基体的保护作用较差,腐蚀速率高;低H<sub>2</sub>S分压下,CO<sub>2</sub>腐蚀起主导作用,腐蚀速率的大小取决于腐蚀产物膜的致密性;相比于CO<sub>2</sub>,温度对腐蚀速率的影响更显著。

Liu Y, Xu L N, Lu M X, et al.

Corrosion mechanism of 13Cr stainless steel in completion fluid of high temperature and high concentration bromine salt

[J]. Appl. Surf. Sci., 2014, 314: 768

[本文引用: 1]

Son A J, Kuzlik M S.

Corrosion inhibitor for heavy brines

[P]. US Pat, 4539122A, 1985

Liu W Y, Shi T H, Li S, et al.

Failure analysis of a fracture tubing used in the formate annulus protection fluid

[J]. Eng. Fail. Anal., 2019, 95: 248

Liu K B, Zhou W M, Zhi T C, et al.

Stress corrosion cracking behavior of super 13Cr stainless steel in CO2-containing CaCl2 completion fluid

[J]. Chem. Eng. Oil Gas, 2007, 36: 222

刘克斌, 周伟民, 植田昌克 .

超级13Cr钢在含CO2的CaCl2完井液中应力腐蚀开裂行为

[J]. 石油与天然气化工, 2007, 36: 222

Yang L T, Zhang J J, Li F, et al.

Study on corrosion behavior of P110S steel in CO2-H2S-saturated solution

[J]. Int. J. Electrochem. Sci., 2022, 17: 22018

[本文引用: 1]

Bungert D, Maikranz S, Sundermann R, et al.

The evolution and application of formate brines in high-temperature/high-pressure operations

[A]. SPE/IADC Drilling Conference and Exhibition [C]. New Orleans, 2000: SPE-59191-MS

[本文引用: 1]

Zang W W, Xu T T, Zhao Z J, et al.

Physical and chemical properties of cesium and other formate brines as drilling/completion fluids

[J]. Oilfield Chem., 2010, 27: 100

臧伟伟, 徐同台, 赵忠举 .

甲酸铯及其他甲酸盐水溶液的物理化学特性

[J]. 油田化学, 2010, 27: 100

Zeng Q L.

Formate drilling fluid system application

[D]. Xi'an: Xi'an Shiyou University, 2010

[本文引用: 1]

曾庆林.

甲酸盐钻井液体系的应用

[D]. 西安: 西安石油大学, 2010

[本文引用: 1]

Zeng D Z, Chen R, Zhang Z, et al.

Research on stress corrosion sensitivity of C110 casing in wellbore protection fluid

[J]. Energy Procedia, 2012, 16: 816

[本文引用: 1]

Zhu S D, Wei J F, Bai Z Q, et al.

Failure analysis of P110 tubing string in the ultra-deep oil well

[J]. Eng. Fail. Anal., 2011, 18: 950

Zhu S D, Wei J F, Cai R, et al.

Corrosion failure analysis of high strength grade super 13Cr-110 tubing string

[J]. Eng. Fail. Anal., 2011, 18: 2222

Yue X Q, Zhang L, Ma L, et al.

Influence of a small velocity variation on the evolution of the corrosion products and corrosion behaviour of super 13Cr SS in a geothermal CO2 containing environment

[J]. Corros. Sci., 2021, 178: 108983

Zhao Y, Chang L M, Zhang T, et al.

Effect of the flow velocity on the corrosion behavior of UNS S41426 stainless steel in the extremely aggressive oilfield environment for the Tarim area

[J]. Corrosion, 2020, 76: 654

[本文引用: 1]

Sánchez-Tovar R, Montañés M T, García-Antón J.

Effect of the micro-plasma arc welding technique on the microstructure and pitting corrosion of AISI 316L stainless steels in heavy LiBr brines

[J]. Corros. Sci., 2011, 53: 2598

[本文引用: 1]

Mou L M, Bian T T, Zhang S H, et al.

Understanding the interaction mechanism of chloride ions and carbon dioxide towards corrosion of 3Cr steel

[J]. Vacuum, 2023, 217: 112571

Pfennig A, Wiegand R, Wolf M, et al.

Corrosion and corrosion fatigue of AISI 420C (X46Cr13) at 60 ℃ in CO2-saturated artificial geothermal brine

[J]. Corros. Sci., 2013, 68: 134

[本文引用: 1]

Huang Z J, Wang B, Yang Z W, et al.

Study on the corrosion behavior of P110S in high-temperature CaCl2 completion fluid

[J]. Mater. Prot., 2021, 54(6): 83

[本文引用: 1]

黄知娟, 王 贝, 杨志文 .

P110S在高温CaCl2完井液中的腐蚀规律研究

[J]. 材料保护, 2021, 54(6): 83

[本文引用: 1]

Leth-Olsen H.

CO2 corrosion of steel in formate brines for well applications

[A]. Corrosion 2004 [C]. New Orleans, 2004: 1

[本文引用: 1]

Li W L, Zhang H J, Du C C, et al.

Effect of CO2 on the corrosion behavior of C110 carbon steel in formate solution environment

[J]. Mater. Prot., 2018, 51(10): 47

[本文引用: 1]

李渭亮, 张慧娟, 杜春朝 .

CO2渗入对C110管柱在甲酸盐完井液中腐蚀行为的影响

[J]. 材料保护, 2018, 51(10): 47

[本文引用: 1]

Zhang Z, Zheng Y S, Li J, et al.

Localized corrosion resistance of super 13Cr stainless steel in formate completion fluid containing CO2

[J]. Mater. Prot., 2018, 51(8): 26

[本文引用: 1]

张 智, 郑钰山, 李 晶 .

含CO2甲酸盐完井液中超级13Cr不锈钢的局部腐蚀性能

[J]. 材料保护, 2018, 51(8): 26

[本文引用: 1]

Yang X T, X H, Xie J F, et al.

Corrosion behavior of high strength 15Cr martensitic stainless steel in organic salt completion fluid

[J]. Corros. Prot., 2018, 39: 901

杨向同, 吕祥鸿, 谢俊峰 .

高强15Cr马氏体不锈钢在有机盐完井液中的腐蚀行为

[J]. 腐蚀与防护, 2018, 39: 901

Zhao G X, Du H B, Qian J, et al.

Corrosion behavior of 2507 super duplex stainless in potassium formate completion fluid

[J]. Corros. Prot., 2021, 42(10): 54

赵国仙, 杜航波, 钱 炯 .

2507超级双相不锈钢在甲酸盐完井液中的腐蚀行为

[J]. 腐蚀与防护, 2021, 42(10): 54

Zhao G X, Gao F.

Anti-corrosion behavior of TC4 alloy in organic salt completion fluid

[J]. Drill. Fluid Completion Fluid, 2020, 37: 264

[本文引用: 1]

赵国仙, 高 飞.

TC4钛合金在有机盐完井液中的腐蚀性能

[J]. 钻井液与完井液, 2020, 37: 264

[本文引用: 1]

Yue X Q, Huang L Y, Qu Z H, et al.

Formation and evolution of the corrosion scales on super 13Cr stainless steel in a formate completion fluid with aggressive substances

[J]. Front. Mater., 2022, 8: 802136

[本文引用: 1]

Sun Q, Chen C F, Zhao X, et al.

Ion-selectivity of iron sulfides and their effect on H2S corrosion

[J]. Corros. Sci., 2019, 158: 108085

[本文引用: 1]

Dong Y G, Chai Z G, Liu Q L, et al.

Discussion on corrosion of ground equipment in oil and gas field from carbon dioxide

[J]. Inner Mongolia Petrochem. Ind., 2019, 45(2): 65

[本文引用: 1]

董艳国, 柴治国, 刘秋兰 .

二氧化碳对油气田地面设备的腐蚀探讨

[J]. 内蒙古石油化工, 2019, 45(2): 65

[本文引用: 1]

Zhu K H, Liu Y, Su N, et al.

Behavior pattern and research progress of carbon dioxide corrosion in oil well

[J]. Total Corros. Control, 2013, 27(10): 23

[本文引用: 1]

朱克华, 刘 云, 苏 娜 .

油井二氧化碳腐蚀行为规律及研究进展

[J]. 全面腐蚀控制, 2013, 27(10): 23

[本文引用: 1]

Liu G S, Wang W J, Zhou P, et al.

Corrosion behavior of casing steels 13Cr and N80 during sequestration in an impure carbon dioxide environment

[J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1200

[本文引用: 1]

刘广胜, 王卫军, 周 佩 .

含杂CO2封存条件下13Cr和N80套管钢腐蚀规律研究

[J]. 中国腐蚀与防护学报, 2024, 44: 1200

DOI      [本文引用: 1]

井筒屏障金属材料腐蚀失效是影响碳封存安全性的关键问题。针对高温高压含杂CO<sub>2</sub>封存环境下井筒套管腐蚀规律问题,利用高温高压反应釜模拟封存条件下的井下工况,分别研究了N80及13Cr钢在不同压力、应力条件下含杂质(SO<sub>2</sub>、NO<sub>2</sub>和O<sub>2</sub>)的超临界CO<sub>2</sub>富水相中的腐蚀规律。本研究利用失重法得到腐蚀速率,并利用扫描电镜(SEM)、X射线衍射仪(XRD)和X射线光电子能谱仪(XPS)等对产物膜进行了表征分析。结果表明,N80钢的均匀腐蚀与点蚀速率均随着压力的升高而增大;压力对13Cr钢的均匀腐蚀影响不明显,但在压力为20 MPa时出现严重的点蚀现象;给试样施加拉应力后,随着应力的增加,N80及13Cr钢的腐蚀产物层均出现了不同程度的破损,但是基体表面未观察到裂纹生成。

Li H X, Li D P, Zhang L, et al.

Fundamental aspects of the corrosion of N80 steel in a formation water system under high CO2 partial pressure at 100 ℃

[J]. RSC Adv., 2019, 9: 11641

[本文引用: 1]

Li X P, Zhao Y, Qi W L, et al.

Effect of extremely aggressive environment on the nature of corrosion scales of HP-13Cr stainless steel

[J]. Appl. Surf. Sci., 2019, 469: 146

Zhang G A, Cheng Y F.

On the fundamentals of electrochemical corrosion of X65 steel in CO2-containing formation water in the presence of acetic acid in petroleum production

[J]. Corros. Sci., 2009, 51: 87

Dong L J, Zhang X L, Li Y F, et al.

Effect of thiosulphate/H2S on crevice corrosion behaviour of P110 carbon steel in CO2-saturated solution

[J]. Corros. Eng. Sci. Technol., 2020, 55: 253

[本文引用: 1]

/