|
|
高强度低合金钢中V和Nb对氢陷阱的影响 |
彭浩, 程晓英( ), 李晓亮, 王兆丰, 蔡贞祥 |
上海大学材料研究所 上海 200072 |
|
Effect of V and Nb on Hydrogen Traps in High Strength Low Alloy Steel |
PENG Hao, CHENG Xiaoying( ), LI Xiaoliang, WANG Zhaofeng, CAI Zhenxiang |
Institute of Materials, Shanghai University, Shanghai 200072, China |
引用本文:
彭浩, 程晓英, 李晓亮, 王兆丰, 蔡贞祥. 高强度低合金钢中V和Nb对氢陷阱的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 415-420.
Hao PENG,
Xiaoying CHENG,
Xiaoliang LI,
Zhaofeng WANG,
Zhenxiang CAI.
Effect of V and Nb on Hydrogen Traps in High Strength Low Alloy Steel. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 415-420.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2022.097
或
https://www.jcscp.org/CN/Y2023/V43/I2/415
|
[1] |
Cheng X B, Cheng X Y, Jiang C W, et al. Hydrogen diffusion and trapping in V-microalloyed mooring chain steels [J]. Mater. Lett., 2018, 213: 118
doi: 10.1016/j.matlet.2017.11.029
|
[2] |
Loidl M, Kolk O, Veith S, et al. Characterization of hydrogen embrittlement in automotive advanced high strength steels [J]. Materialwiss. Werkstofftech., 2011, 42: 1105
doi: 10.1002/mawe.201100917
|
[3] |
Kaneko M, Doshida T, Takai K. Changes in mechanical properties following cyclic prestressing of martensitic steel containing vanadium carbide in presence of nondiffusible hydrogen [J]. Mater. Sci. Eng., 2016, 674A: 375
|
[4] |
Zhou Y, Zhang H B, Du M, et al. Effect of cathodic potentials on hydrogen embrittlement of 1000 MPa grade high strength steel in simulated deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 409
|
[4] |
(周宇, 张海兵, 杜敏 等. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 409)
|
[5] |
Zhao H Y, Wang P, Li J X. Effect of vanadium content on hydrogen embrittlement of 1400 MPa grade high strength bolt steels [J]. Int. J. Hydrogen Energy, 2021, 46: 34983
doi: 10.1016/j.ijhydene.2021.08.060
|
[6] |
Song X, Pei P, Zhang P L, et al. Effect of vanadium content on hydrogen storage property in Ti-V-Cr alloys [J]. Rare Met., 2006, 25: 374
doi: 10.1016/S1001-0521(07)60109-0
|
[7] |
Zhang S Q, Wan J F, Zhao Q Y, et al. Dual role of nanosized NbC precipitates in hydrogen embrittlement susceptibility of lath martensitic steel [J]. Corros. Sci., 2020, 164: 108345
doi: 10.1016/j.corsci.2019.108345
|
[8] |
Park T M, Kim H J, Um H Y, et al. The possibility of enhanced hydrogen embrittlement resistance of medium-Mn steels by addition of micro-alloying elements [J]. Mater. Charact., 2020, 165: 110386
doi: 10.1016/j.matchar.2020.110386
|
[9] |
Wang L, Cheng X Y, Peng H, et al. Effect of tempering temperature on hydrogen embrittlement in V-containing low alloy high strength steel [J]. Mater. Lett., 2021, 302: 130327
doi: 10.1016/j.matlet.2021.130327
|
[10] |
Williamson G K, Hall W H. X-ray line broadening from filed aluminium and wolfram [J]. Acta Metall., 1953, 1: 22
doi: 10.1016/0001-6160(53)90006-6
|
[11] |
Williamson G K, Smallman R E. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum [J]. Philos. Mag., 1956, 1: 34
doi: 10.1080/14786435608238074
|
[12] |
Jin X K, Xu L, Yu W C, et al. Effect of hydrogen on the very high cycle fatigue properties of quenched and tempered steels containing (Ti, Mo) C precipitates [J]. Rare Met. Mater. Eng., 2021, 50: 458
|
[12] |
(靳晓坤, 徐乐, 尉文超 等. 氢对含 (Ti, Mo) C析出相的调质钢的超高周疲劳性能的影响 [J]. 材料科学, 2021, 50: 458)
|
[13] |
Han Y D, Wang R Z, Wang H, et al. Hydrogen embrittlement sensitivity of X100 pipeline steel under different pre-strain [J]. Int. J. Hydrogen Energy, 2019, 44: 22380
doi: 10.1016/j.ijhydene.2019.06.054
|
[14] |
Dwivedi S K, Vishwakarma M. Effect of hydrogen in advanced high strength steel materials [J]. Int. J. Hydrogen Energy, 2019, 44: 28007
doi: 10.1016/j.ijhydene.2019.08.149
|
[15] |
Wallaert E, Depover T, Arafin M, et al. Thermal desorption spectroscopy evaluation of the hydrogen-trapping capacity of NbC and NbN precipitates [J]. Metall. Mater. Trans., 2014, 45A: 2412
|
[16] |
Lee J, Lee T, Kwon Y J, et al. Effects of vanadium carbides on hydrogen embrittlement of tempered martensitic steel [J]. Met. Mater. Int., 2016, 22: 364
doi: 10.1007/s12540-016-5631-7
|
[17] |
Cheng X Y, Zhang H X. A new perspective on hydrogen diffusion and hydrogen embrittlement in low-alloy high strength steel [J]. Corros. Sci., 2020, 174: 108800
doi: 10.1016/j.corsci.2020.108800
|
[18] |
Zafra A, Belzunce J, Rodríguez C, et al. Hydrogen embrittlement of the coarse grain heat affected zone of a quenched and tempered 42CrMo4 steel [J]. Int. J. Hydrogen Energy, 2020, 45: 16890
doi: 10.1016/j.ijhydene.2020.04.097
|
[19] |
Hirth J P. Effects of hydrogen on the properties of iron and steel [J]. Metall. Trans., 1980, 11A: 861
|
[20] |
Feng P G, Cheng X Y, Zhang H X. Effect of original austenite grain size on hydrogen embrittlement sensitivity of high strength low alloy mooring chain steel [J]. Heat Treat. Met., 2014, 39(11): 20
|
[20] |
(冯佩功, 程晓英, 张海霞. 原奥氏体晶粒尺寸对低合金高强度系泊链钢氢脆敏感性的影响 [J]. 金属热处理, 2014, 39(11): 20)
|
[21] |
Lessar J F, Gerberich W W. Grain size effects in hydrogen-assisted cracking [J]. Metall. Trans., 1976, 7A: 953
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|