Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (2): 415-420     CSTR: 32134.14.1005.4537.2022.097      DOI: 10.11902/1005.4537.2022.097
  研究报告 本期目录 | 过刊浏览 |
高强度低合金钢中V和Nb对氢陷阱的影响
彭浩, 程晓英(), 李晓亮, 王兆丰, 蔡贞祥
上海大学材料研究所 上海 200072
Effect of V and Nb on Hydrogen Traps in High Strength Low Alloy Steel
PENG Hao, CHENG Xiaoying(), LI Xiaoliang, WANG Zhaofeng, CAI Zhenxiang
Institute of Materials, Shanghai University, Shanghai 200072, China
全文: PDF(5099 KB)   HTML
摘要: 

随着海洋资源的开发,传统高强度低合金钢已不能完全满足复杂的深海环境,通过添加合金元素来改善其抗氢脆性能。采用双电解池研究含与不含0.15%V+0.05%Nb合金元素的高强度低合金钢中氢扩散行为,并采用扫描电镜 (SEM)、透射电镜 (TEM) 和X射线衍射分析 (XRD) 等方法测量原奥氏体晶粒大小和位错密度。根据原奥氏体晶粒尺寸和位错密度计算得到钢中可逆氢陷阱密度,并将其与氢分析仪测得钢中氢含量建立联系。结果表明,V与Nb能够通过在钢中形成碳化物使得原奥氏体晶粒细化和位错密度增加,引起钢中可逆氢陷阱密度增加,从而降低氢扩散系数以及提高钢中氢含量和氢扩散激活能。

关键词 高强度低合金钢氢扩散氢陷阱位错密度    
Abstract

With the ultilization and development of deep-sea resources, the traditional high strength low alloy steel can not completely meet the service requirements for the complex deep-sea environment, therefore, it is necessary to find a new way to solve the hydrogen embrittlement. As an example, the hydrogen diffusion behavior of high strength low alloy steel with and without addition of 0.15%V+0.05%Nb was studied by using double cell method in this article. Meanwhile, the grain size of the prior austenite and dislocation density were measured by scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffractometer (XRD), respectively. The reversible hydrogen trap density in steel was calculated from the original austenite grain size and dislocation density, which was correlated with the hydrogen content in the steel measured by hydrogen analyzer. The results showed that V and Nb can increase the density of reversible hydrogen traps due to the grain refinement and the increase of dislocation density, which may result from the formation of carbides in steels, then reduce the hydrogen diffusion coefficient, as well as increase the activation energy of the hydrogen diffusion and hydrogen content in the steel.

Key wordshigh strength steel low alloy steel    hydrogen diffusion    hydrogen trap    dislocation density
收稿日期: 2022-04-08      32134.14.1005.4537.2022.097
ZTFLH:  TG142.1  
基金资助:国家自然科学基金(51871145)
作者简介: 彭浩,男,1993年生,硕士生

引用本文:

彭浩, 程晓英, 李晓亮, 王兆丰, 蔡贞祥. 高强度低合金钢中V和Nb对氢陷阱的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 415-420.
Hao PENG, Xiaoying CHENG, Xiaoliang LI, Zhaofeng WANG, Zhenxiang CAI. Effect of V and Nb on Hydrogen Traps in High Strength Low Alloy Steel. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 415-420.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.097      或      https://www.jcscp.org/CN/Y2023/V43/I2/415

图1  0V+0Nb钢和0.15V+0.05Nb钢的SEM形貌
图2  0V+0Nb钢和0.15V+0.05Nb钢的TEM形貌
图3  0V+0Nb钢和0.15V+0.05Nb钢的FWHM cosθ/λ-sinθ/λ关系
图4  0V+0Nb钢和0.15V+0.05Nb钢的氢扩散曲线与氢扩散系数随温度变化的关系曲线
SteelNgr / cm-3Ndis / cm-3H0 h / mol·cm-3NH / cm-3θTH24 h / mol·cm-3
0V+0Nb2.65×10195.81×10194.19×10-52.59×10190.311.76×10-5
0.15V+0.05Nb3.86×10191.33×10208.08×10-54.99×10190.294.91×10-5
表1  实验钢中的氢浓度与氢陷阱密度
[1] Cheng X B, Cheng X Y, Jiang C W, et al. Hydrogen diffusion and trapping in V-microalloyed mooring chain steels [J]. Mater. Lett., 2018, 213: 118
doi: 10.1016/j.matlet.2017.11.029
[2] Loidl M, Kolk O, Veith S, et al. Characterization of hydrogen embrittlement in automotive advanced high strength steels [J]. Materialwiss. Werkstofftech., 2011, 42: 1105
doi: 10.1002/mawe.201100917
[3] Kaneko M, Doshida T, Takai K. Changes in mechanical properties following cyclic prestressing of martensitic steel containing vanadium carbide in presence of nondiffusible hydrogen [J]. Mater. Sci. Eng., 2016, 674A: 375
[4] Zhou Y, Zhang H B, Du M, et al. Effect of cathodic potentials on hydrogen embrittlement of 1000 MPa grade high strength steel in simulated deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 409
[4] (周宇, 张海兵, 杜敏 等. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 409)
[5] Zhao H Y, Wang P, Li J X. Effect of vanadium content on hydrogen embrittlement of 1400 MPa grade high strength bolt steels [J]. Int. J. Hydrogen Energy, 2021, 46: 34983
doi: 10.1016/j.ijhydene.2021.08.060
[6] Song X, Pei P, Zhang P L, et al. Effect of vanadium content on hydrogen storage property in Ti-V-Cr alloys [J]. Rare Met., 2006, 25: 374
doi: 10.1016/S1001-0521(07)60109-0
[7] Zhang S Q, Wan J F, Zhao Q Y, et al. Dual role of nanosized NbC precipitates in hydrogen embrittlement susceptibility of lath martensitic steel [J]. Corros. Sci., 2020, 164: 108345
doi: 10.1016/j.corsci.2019.108345
[8] Park T M, Kim H J, Um H Y, et al. The possibility of enhanced hydrogen embrittlement resistance of medium-Mn steels by addition of micro-alloying elements [J]. Mater. Charact., 2020, 165: 110386
doi: 10.1016/j.matchar.2020.110386
[9] Wang L, Cheng X Y, Peng H, et al. Effect of tempering temperature on hydrogen embrittlement in V-containing low alloy high strength steel [J]. Mater. Lett., 2021, 302: 130327
doi: 10.1016/j.matlet.2021.130327
[10] Williamson G K, Hall W H. X-ray line broadening from filed aluminium and wolfram [J]. Acta Metall., 1953, 1: 22
doi: 10.1016/0001-6160(53)90006-6
[11] Williamson G K, Smallman R E. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum [J]. Philos. Mag., 1956, 1: 34
doi: 10.1080/14786435608238074
[12] Jin X K, Xu L, Yu W C, et al. Effect of hydrogen on the very high cycle fatigue properties of quenched and tempered steels containing (Ti, Mo) C precipitates [J]. Rare Met. Mater. Eng., 2021, 50: 458
[12] (靳晓坤, 徐乐, 尉文超 等. 氢对含 (Ti, Mo) C析出相的调质钢的超高周疲劳性能的影响 [J]. 材料科学, 2021, 50: 458)
[13] Han Y D, Wang R Z, Wang H, et al. Hydrogen embrittlement sensitivity of X100 pipeline steel under different pre-strain [J]. Int. J. Hydrogen Energy, 2019, 44: 22380
doi: 10.1016/j.ijhydene.2019.06.054
[14] Dwivedi S K, Vishwakarma M. Effect of hydrogen in advanced high strength steel materials [J]. Int. J. Hydrogen Energy, 2019, 44: 28007
doi: 10.1016/j.ijhydene.2019.08.149
[15] Wallaert E, Depover T, Arafin M, et al. Thermal desorption spectroscopy evaluation of the hydrogen-trapping capacity of NbC and NbN precipitates [J]. Metall. Mater. Trans., 2014, 45A: 2412
[16] Lee J, Lee T, Kwon Y J, et al. Effects of vanadium carbides on hydrogen embrittlement of tempered martensitic steel [J]. Met. Mater. Int., 2016, 22: 364
doi: 10.1007/s12540-016-5631-7
[17] Cheng X Y, Zhang H X. A new perspective on hydrogen diffusion and hydrogen embrittlement in low-alloy high strength steel [J]. Corros. Sci., 2020, 174: 108800
doi: 10.1016/j.corsci.2020.108800
[18] Zafra A, Belzunce J, Rodríguez C, et al. Hydrogen embrittlement of the coarse grain heat affected zone of a quenched and tempered 42CrMo4 steel [J]. Int. J. Hydrogen Energy, 2020, 45: 16890
doi: 10.1016/j.ijhydene.2020.04.097
[19] Hirth J P. Effects of hydrogen on the properties of iron and steel [J]. Metall. Trans., 1980, 11A: 861
[20] Feng P G, Cheng X Y, Zhang H X. Effect of original austenite grain size on hydrogen embrittlement sensitivity of high strength low alloy mooring chain steel [J]. Heat Treat. Met., 2014, 39(11): 20
[20] (冯佩功, 程晓英, 张海霞. 原奥氏体晶粒尺寸对低合金高强度系泊链钢氢脆敏感性的影响 [J]. 金属热处理, 2014, 39(11): 20)
[21] Lessar J F, Gerberich W W. Grain size effects in hydrogen-assisted cracking [J]. Metall. Trans., 1976, 7A: 953
[1] 王艳飞, 李耀州, 黄玉婷, 谢宏琳, 吴炜杰. 晶粒尺寸对304L奥氏体不锈钢氢脆的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 494-506.
[2] 柯书忠, 刘静, 黄峰, 王贞, 毕云杰. 预应变对DP600钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 424-430.
[3] 杨 超, 张慧霞 郭为民 付玉彬. 添加双氧水对高强度低合金钢在海水中
腐蚀影响的研究
[J]. 中国腐蚀与防护学报, 2013, 33(3): 205-210.
[4] 王艳飞,巩建鸣,唐建群,蒋旺,姜莹洁. 冷拔残余应力应变对钢丝氢扩散过程的影响[J]. 中国腐蚀与防护学报, 2011, 31(3): 202-207.
[5] 李华飞; 徐金文; 刘根凡 . 渗铝钢的抗氢损伤性能[J]. 中国腐蚀与防护学报, 2005, 25(4): 237-240 .
[6] 傅朝阳;郑家燊. 钻井液中碳钢的氢扩散和腐蚀疲劳行为[J]. 中国腐蚀与防护学报, 1997, 17(4): 263-268.
[7] 路民旭;郑修麟. 超高强度钢CF裂纹扩展的超载效应 Ⅰ.定量模型及预测[J]. 中国腐蚀与防护学报, 1994, 14(3): 184-192.