Please wait a minute...
中国腐蚀与防护学报  2007, Vol. 27 Issue (5): 303-308     
  研究报告 本期目录 | 过刊浏览 |
汉代五铢钱币腐蚀特性研究
和玲;姜宝莲;甄刚
西安交通大学
THE CHARACTERIZATION OF ANCIENT CHINESE WU ZHU COIN OF HAN DYNASTY AND ITS CORROSION MECHANISM
;;;
西安交通大学
全文: PDF(387 KB)  
摘要: 用光学显微镜、X-射线衍射及扫描电镜能谱等方法,研究了五铢钱币的化学组成及表面腐蚀特点。通过对模拟青铜样片进行锈蚀产生条件及腐蚀特征的分析,研究了铜币的腐蚀机理。研究表明,尽管不同钱币表面上的化学元素含量差异较大,但钱币基体的元素含量约为Cu 82%~86%, Sn 2%~4%, Pb 7%~11%,属于青铜材料。Fe、Si和Al的含量较低。钱币腐蚀产物以多种形式附着在铜币表面,淡绿色的粉状腐蚀产物主要为Cu2(OH)3Cl(绿铜矿),致密的绿色腐蚀产物主要为Cu3(CO3)2(OH)2(蓝铜矿),坚硬致密的墨绿色突出结状物为Cu2(OH)2CO3(孔雀石),土绿色锈蚀为铜锈与铁锈的混合物,锈层较厚。模拟腐蚀研究表明,Cl-、O2、H2O及酸性条件共存是五铢钱币腐蚀的主要因素。
关键词 五铢钱币青铜腐蚀特征粉状锈模拟腐蚀    
Abstract:This paper presents the joint research aimed at collecting technical information through an scientific examinations carried out on WuZhu coins from the largest mint site in the Chinese history. Optical microscopy (OM), scanning electron microscopy coupled with energy-dispersive X-ray analysis (SEM-EDX) as well as X-ray diffraction (XRD) have been used for both characterizing the elementary composition,morphology and corrosion products of coins.The analytical results revealed that the coin was made of bronze;the elementary composition is in good agreement with the information gathered through the historical survey. At the same time, the patina of coin was analyzed in this paper, mainly containing Cu2(OH)3Cl, Cu2(OH)3Cl, Cu3(CO3)2(OH)2, Cu2(OH)2CO3, CuO2 and some other minerals. The main corrosion products were azurite (2CuCO3·Cu(OH)2, blue appearance ), malachite (CuCO3·Cu(OH)2, dark green color), dioptase (CuCl2·3Cu(OH)2, CuCl2·Cu(OH)2, dark green color), cerusite (PbCO3) and others. Meanwhile, the artificial corrosion displayed that Cl-, O2, H2O were the most important factors for the erosion of WuZhu coin.
Key wordsWuZhu coin    bronze    corrosion feature    patina    corrosion simulation
收稿日期: 2006-03-24     
ZTFLH:  TG172  
通讯作者: 和玲     E-mail: ling121212@sohu.com

引用本文:

和玲; 姜宝莲; 甄刚 . 汉代五铢钱币腐蚀特性研究[J]. 中国腐蚀与防护学报, 2007, 27(5): 303-308 .
. THE CHARACTERIZATION OF ANCIENT CHINESE WU ZHU COIN OF HAN DYNASTY AND ITS CORROSION MECHANISM. J Chin Soc Corr Pro, 2007, 27(5): 303-308 .

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2007/V27/I5/303

[1]Xian Center for the Conservation and Restoration of Cultural Prop-erty.Zhong Guan Mint Archaeological Site[M].Beijing:SciencePress,2004(西安文物保护修复中心编著.汉锺官铸钱遗址[M].北京:科学出版社,2004)
[2]Tang K K.Chinese Coin Cultural[M].Tianjin:Tianjin PeoplePress,2004(汤可可.中国钱币文化[M].天津:天津人民出版社,2004)
[3]Franceschi E,Giorgi M,Luciano G,et al.Archaeometallurgicalcharacterization of two small copper-based statues from the Civi-dale Museum(Friuli,Italy)[J].J.Cultural Heritag,2004,5:205-211
[4]Sadoria L,Giraudib C,Petittic P,et al.Human impact at Lagodi Mezzano(central Italy)during the Bronze Age:a multidisci-plinary approach[J].Quaternary Internation,2004,113:5-17
[5]Squarcialupi M C,Bernardini G P,Faso V,et al.Characteriza-tion by XPS of the corrosion patina formed on bronze surfaces[J].J.Cultural Heritage,2002,3:199-204
[6]Paparazzo E,Moretto L.X-ray photoelectron spectroscopy and scan-ning Auger microscopy studies of bronzes from the collections ofthe Vatican Museum[J].Vacuum,19995,5:59-70
[7]Bierwagen G,Shedlosky T J,Stanek K.Developing and testing anew generation of protective coatings for outdoor bronze sculpture[J].Progress in Organic Coatings,2003,48:289-296
[8]Constantinides I,Adriaens A,Adams F.Surface characterizationof artificial corrosion layers on copper alloy reference materials[J].App.Surf.Sci.,2002,189:90-101
[9]Ryck I De,Biezen E V,Leyssens K,et al.Study of tin corrosion:the influence of alloying elements[J].J.Cultural Heritage,2004,5:189-195
[10]Zhu H F,Zhou H.A study of the corrosion on bronze[J].Electro-chemistry,1999,5(3):314-318(祝鸿范,周浩.铜器文物腐蚀受损原因的研究[J].电化学,1999,5(3):314-318)
[11]Zhang Z S,Chen S H,Chen Z R,et al.Simulation study on the cor-rosion processes of unearthed bronze relics[J].J.Chin.Soc.Cor-ros.Prot.,2006,26(2):94-99(张展适,陈少华,陈障茹,刘月妙.青铜文物腐蚀过程的模拟研究[J].中国腐蚀与防护学报,2006,26(2):94-99)
[1] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[2] 和佳乐, 王菊琳. 初始pH值和Cl-浓度对CuCl水解的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 397-402.
[3] 吴涛涛, 孟威威, 鲍志荣, 李洋, 潘春旭. 过量CO2气氛环境下青铜表面生成孔雀石锈蚀产物的模拟研究[J]. 中国腐蚀与防护学报, 2014, 34(1): 82-88.
[4] 万 俐 杜 伟 李佳佳 丁 毅 陈步荣. 十八硫醇自组装膜对青铜-银电偶腐蚀的
抑制作用
[J]. 中国腐蚀与防护学报, 2013, 33(3): 245-250.
[5] 常安乐,宋诗哲. 模拟海洋环境浪花飞溅区的金属构筑物腐蚀监检测[J]. 中国腐蚀与防护学报, 2012, 32(3): 247-250.
[6] 晏德付,秦颍,陈茜,黄凰. 青铜器氯化物腐蚀产物的热分析[J]. 中国腐蚀与防护学报, 2012, 32(1): 64-66.
[7] 黄凰,秦颍,徐劲松. 湖北鄂州出土青铜器锈蚀状况分析[J]. 中国腐蚀与防护学报, 2011, 31(1): 76-80.
[8] 凡小盼; 王昌燧; 金普军 . 热处理对铅锡青铜耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2008, 28(2): 112-115 .
[9] 冯丽婷; 刘清; 包祥; 冯绍彬 . 青铜器加速腐蚀的多孔氧电极研究[J]. 中国腐蚀与防护学报, 2006, 26(3): 184-187 .
[10] 张展适; 陈少华; 陈障茹; 刘月妙 . 青铜文物腐蚀过程的模拟研究[J]. 中国腐蚀与防护学报, 2006, 26(2): 94-99 .
[11] 王菊琳; 许淳淳; 于淼 . 青铜文物表面腐蚀产物的组成及深度分布研究[J]. 中国腐蚀与防护学报, 2005, 25(3): 163-166 .
[12] 于辉; 董飒英; 黄国胜 . 铝青铜在3.5%NaCl溶液中的脱成份腐蚀行为[J]. 中国腐蚀与防护学报, 2003, 23(6): 345-349 .
[13] 韩忠; 江伟明; 林海潮 . 海水管路系统中铝青铜腐蚀行为的研究[J]. 中国腐蚀与防护学报, 2000, 20(3): 188-192 .
[14] 金韬;王昌燧;陈志文;李凡庆. 青铜表面SnO_2保护膜的制备及其防护性能研究[J]. 中国腐蚀与防护学报, 1997, 17(2): 111-115.