Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (2): 317-323    DOI: 10.11902/1005.4537.2021.103
  研究报告 本期目录 | 过刊浏览 |
铝硅复合对Fe32Mn7Cr3Al2Si钢氧化改性层耐蚀性的影响
梁泰贺, 朱雪梅(), 张振卫, 王新建, 张彦生
大连交通大学材料科学与工程学院 大连 116028
Corrosion Performance of Transition Layer at Interface of Oxide Scale/substrate Formed on Austenitic Steel Fe32Mn7Cr3Al2Si During High Temperature Oxidation
LIANG Taihe, ZHU Xuemei(), ZHANG Zhenwei, WANG Xinjian, ZHANG Yansheng
School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
全文: PDF(6494 KB)   HTML
摘要: 

利用XRD、EPMA、阳极极化和电化学阻抗技术研究了铝硅复合合金化对Fe32Mn7Cr3Al2Si钢高温氧化诱发转变层的组织、成分及电化学腐蚀性能影响。在700和800 ℃空气中对Fe32Mn7Cr3Al2Si奥氏体钢进行循环氧化表面改性,形成的氧化层由内层Al2O3、中间层Mn2SiO4,外层Mn2O3组成。经800 ℃空气中循环氧化160 h后,在钢基体/氧化层界面形成了厚度约20 μm的贫Mn (11%)、富Cr (14%) 铁素体α相转变层。相比原始Fe32Mn7Cr3Al2Si钢,贫Mn富Cr的氧化改性层在1 mol/L Na2SO4溶液中的自腐蚀电位由-463 mV增至248 mV,维钝电流密度由2.8 μA/cm2降至0.4 μA/cm2,电荷转移电阻Rt由15.5 kΩ·cm2增至69.7 kΩ·cm2,铝硅复合加入可增加Fe32Mn7Cr3Al2Si钢氧化诱发贫Mn层中的Cr富集,显著提高钢的耐蚀性能。

关键词 Fe32Mn7Cr3Al2Si钢氧化表面改性氧化诱发转变层阳极极化曲线电化学阻抗    
Abstract

The microstructure, composition and electrochemical corrosion properties of the oxidation-induced transition layer on austenitic steel Fe32Mn7Cr3Al2Si was investigated by means of XRD, EPMA, anode polarization and electrochemical impedance measurement, respectively. The Fe32Mn7Cr3Al2Si austenitic steel was intentionally oxidized at 700 and 800 ℃ in air, respectively, the formed oxide scale was typically composed of Mn2O3 outer sublayer, Mn2SiO4 middle sublayer, and Al2O3 inner sublayer. A transition layer of α-ferrite with Mn-depletion of 11% and Cr-enrichment of 14% at the interface of oxide scale/steel matrix was occurred at 800 ℃ in air for 160 h. Compared with the original Fe32Mn7Cr3Al2Si austenitic steel, the transition layer exhibited an increased passivation ability in 1 mol/L Na2SO4 solution, correspondingly, the free-corrosion potential increased from -463 mV (SCE) to 248 mV (SCE), the free corrosion current density decreased from the 2.8 μA/cm2 to 0.4 μA/cm2, and the resistant Rt increased from 15.5 kΩ·cm2 to 69.7 kΩ·cm2. It follows that Al- and Si-alloying can promote the Cr enrichment in the Mn depletion layer and therefore, improve the corrosion resistance of Fe32Mn7Cr3Al2Si austenitic steel.

Key wordsFe32Mn7Cr3Al2Si steel    surface modification    oxidation-induced transformation    anodic polarization    electrochemical impedance spectroscopy
收稿日期: 2021-05-08     
ZTFLH:  TG174  
基金资助:国家自然科学基金(51575077)
通讯作者: 朱雪梅     E-mail: xmzhu@djtu.edu.cn
Corresponding author: ZHU Xuemei     E-mail: xmzhu@djtu.edu.cn
作者简介: 梁泰贺,男,1996年生,硕士生

引用本文:

梁泰贺, 朱雪梅, 张振卫, 王新建, 张彦生. 铝硅复合对Fe32Mn7Cr3Al2Si钢氧化改性层耐蚀性的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 317-323.
Taihe LIANG, Xuemei ZHU, Zhenwei ZHANG, Xinjian WANG, Yansheng ZHANG. Corrosion Performance of Transition Layer at Interface of Oxide Scale/substrate Formed on Austenitic Steel Fe32Mn7Cr3Al2Si During High Temperature Oxidation. Journal of Chinese Society for Corrosion and protection, 2022, 42(2): 317-323.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.103      或      https://www.jcscp.org/CN/Y2022/V42/I2/317

图1  Fe32Mn7Cr3Al2Si钢固溶处理后微观组织EBSD像
图2  Fe32Mn7Cr3Al2Si钢在空气中的循环氧化动力学曲线
图3  Fe32Mn7Cr3Al2Si钢氧化层的XRD谱
图4  Fe32Mn7Cr3Al2Si钢氧化层的表面形貌
图5  Fe32Mn7Cr3Al2Si钢在700 ℃空气中循环氧化160 h后截面元素EPMA图
图6  Fe32Mn7Cr3Al2Si钢在800 ℃空气中循环氧化160 h后截面元素EPMA图
图7  Fe32Mn7Cr3Al2Si钢在800 ℃空气中循环氧化160 h后表层的成分分布
图8  氧化改性前后Fe32Mn7Cr3Al2Si钢的阳极极化曲线
图9  氧化改性前后Fe32Mn7Cr3Al2Si钢的电化学阻抗谱
ProcessRt / kΩ·cm2Y0 / S·s-n·cm-2nRs / Ω·cm2
Mn depletion layer69.73.077×10-50.902.0
Fe32Mn3Al7Cr2Si15.55.556×10-50.891.5
表1  氧化改性前后Fe32Mn7Cr3Al2Si钢电化学阻抗谱的拟合参数
1 Han J, Kang S H, Lee S J, et al. Superplasticity in a lean Fe-Mn-Al steel [J]. Nat. Commun., 2017, 8: 751
2 Chen S P, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels [J]. Prog. Mater. Sci., 2017, 89: 345
3 Chowdhury P, Canadinc D, Sehitoglu H. On deformation behavior of Fe-Mn based structural alloys [J]. Mater. Sci. Eng., 2017, 122R: 1
4 Wu Z Q, Ding H, An X H, et al. Influence of Al content on the strain-hardening behavior of aged low density Fe-Mn-Al-C steels with high Al content [J]. Mater. Sci. Eng., 2015, 639A: 187
5 Fajardo S, Llorente I, Jiménez J A, et al. Effect of Mn additions on the corrosion behaviour of TWIP Fe-Mn-Al-Si austenitic steel in chloride solution [J]. Corros. Sci., 2019, 154: 246
6 Moon K M, Kim D A, Kim Y H, et al. Effect of Mn content on corrosion characteristics of lean Mn TWIP steel [J]. Int. J. Mod. Phys., 2018, 32B: 1840083
7 Hamada A S, Karjalainen L P. Nitric acid resistance of new type Fe-Mn-Al stainless steels [J]. Can. Metall. Quart., 2006, 45: 41
8 Zhang Y S, Zhu X M, Zhong S H. Effect of alloying elements on the electrochemical polarization behavior and passive film of Fe-Mn base alloys in various aqueous solutions [J]. Corros. Sci., 2004, 46: 853
9 Zhang Y S, Zhu X M, Liu M, et al. Effects of anodic passivation on the constitution, stability and resistance to corrosion of passive film formed on an Fe-24Mn-4Al-5Cr alloy [J]. Appl. Surf. Sci., 2004, 222: 89
10 Zhu X M, Liu M, Zhang Y S. Electrochemistry and surface investigations of anodically passivated layer formed on Fe-Mn-Al-Cr alloy in Na2SO4 solution [J]. Corros. Eng. Sci. Technol., 2007, 42: 22
11 Liu M, Zhu X M, Zhang Y S. Effect of initial transpassive treatment on properties of passive film formed on Fe-Mn-Al-Cr alloy [J]. Corros. Eng. Sci. Technol., 2013, 48: 36
12 Pérez P, Pérez F J, Gómez C, et al. Oxidation behaviour of an austenitic Fe-30Mn-5Al-0.5C alloy [J]. Corro. Sci., 2002, 44: 113
13 Pérez P, Garcés G, Pérez F J, et al. Influence of chromium additions on the oxidation resistance of an austenitic Fe-30Mn-5Al alloy [J]. Oxid. Met., 2002, 57: 339
14 Wang C J, Chang Y C. TEM study of the internal oxidation of an Fe-Mn-Al-C alloy after hot corrosion [J]. Oxid. Met., 2002, 57: 363
15 Zhu X M, Wang X J, Liu M, et al. Cyclic oxidation of Fe - 30Mn - 9Al austenitic steel in air at 700 ℃~950 ℃ [J]. Corros. Sci. Prot. Technol., 2005, 17(1): 31
15 朱雪梅, 王新建, 刘明等. Fe-30Mn-9Al 奥氏体钢高温循环氧化特征 [J]. 腐蚀科学与防护技术, 2005, 17(1): 31
16 Zhu X M, Zhang Z W, Wang X J, et al. Electrochemical corrosion behavior of oxidation layer on Fe30Mn5Al alloy [J]. J. Mater. Eng., 2017, 45(8): 83
16 朱雪梅, 张振卫, 王新建等. Fe30Mn5Al合金氧化改性层的电化学腐蚀性能 [J]. 材料工程, 2017, 45(8): 83
17 Su C W, Lee J W, Wang C S, et al. The effect of hot-dipped aluminum coatings on Fe-8Al-30Mn-0.8C alloy [J]. Surf. Coat. Technol., 2008, 202: 1847
18 Jaw J H, Cheng W C, Wang C J. The formation of AIN crystals in an Fe-Mn-Al-C alloy during the nitriding process [J]. Metall. Mater. Trans., 2005, 36A: 2289
19 Zhu X M, Zhang Z W, Wang X J, et al. Corrosion resistance of oxidation-induced Mn depletion layer on austenitic Fe24Mn4Al5Cr alloy [J]. Rare Met. Mater. Eng., 2015, 44: 3197
19 朱雪梅, 张振卫, 王新建等. Fe24Mn4Al5Cr合金高温氧化诱发贫Mn层的耐蚀性 [J]. 稀有金属材料与工程, 2015, 44: 3197
20 Dunning J S, Alman D E, Rawers J C. Influence of silicon and aluminum additions on the oxidation resistance of a lean-chromium stainless steel [J]. Oxid. Met., 2002, 57: 409
21 Xie D B, Zhou Y Y, Lu J T, et al. Effect of Al/Si content on corrosion of Ni-based alloys in supercritical water [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 68
21 谢冬柏, 周游宇, 鲁金涛等. Al/Si对镍基合金在超临界水中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2019, 39: 68
22 Oh J M, McNallan M J, King W E. Microstructural development in the surface region during oxidation of iron-manganese-nickel-silicon alloys [J]. J. Electrochem. Soc., 1986, 133: 1042
23 Li M S. The High Temperature Oxidationof Metal [M]. Beijing: Metallurgical Industry Press, 2001
23 李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001
[1] 苍雨, 黄毓晖, 翁硕, 轩福贞. 环境变量对核电汽轮机转子钢焊接接头电偶腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[2] 曹京宜, 方志刚, 李亮, 冯亚菲, 王兴奇, 寿海明, 杨延格, 褚广哲, 殷文昌. 国产镀锌钢在不同水环境中的腐蚀行为:I淡水和盐水[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[3] 曹京宜, 方志刚, 冯亚菲, 李亮, 杨延格, 寿海明, 王兴奇, 臧勃林. 国产镀锌钢在不同水环境中的腐蚀行为:II反渗透水和调质水[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[4] 曹京宜, 杨延格, 方志刚, 寿海明, 李亮, 冯亚菲, 王兴奇, 褚广哲, 赵伊. 淡水舱涂层在不同水环境中的失效行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[5] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[6] 孙硕, 杨杰, 钱薪竹, 常人丽. Ni-Cr-P化学镀层的制备与电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[7] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[8] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[9] 刘丽,于思荣. 添加Gd对AM60镁合金耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[10] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[11] 蓝秀玲,刘光明,周街胜,刘志雷,彭叔森,李茂东. 有机硅/SiO2杂化溶胶改性丙烯酸树脂及性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[12] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[13] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[14] 姚望, 周和荣, 肖葵, 刘鹏洋, 但佳永, 吴润. 中性盐雾环境中DC06超深冲钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(3): 241-247.
[15] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.