Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (2): 249-257    DOI: 10.11902/1005.4537.2021.025
  研究报告 本期目录 | 过刊浏览 |
直接烧结SiC循环氧化行为的试验研究
江荣1(), 张悦1, 张磊成1, 高希光1, 宋迎东1,2
1.南京航空航天大学能源与动力学院 航空发动机热环境与热结构工业和信息化部重点实验室 江苏省航空动力系统重点实验室 南京 210016
2.南京航空航天大学 机械结构力学及控制国家重点实验室 南京 210016
Experimental Study of Cyclic Oxidation Behavior of Direct-sintered SiC
JIANG Rong1(), ZHANG Yue1, ZHANG Leicheng1, GAO Xiguang1, SONG Yingdong1,2
1.Jiangsu Province Key Laboratory of Aerospace Power System, Key Laboratory of Aero-engine Thermal Environment and Structure, Ministry of Industry and Infor-mation Technology, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2.State Key Laboratory of Mechanics and Control Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
全文: PDF(15243 KB)   HTML
摘要: 

采用管式炉对直接烧结SiC在1300和1400 ℃静止空气中进行不同循环周期下的循环氧化实验。使用分析天平记录样品质量变化,并使用扫描电镜对氧化产物进行表征以揭示循环氧化机理。结果表明,直接烧结SiC的循环氧化行为由前期接近抛物线氧化行为的氧化增重过程与长时间氧化产生氧化层剥落造成的氧化失重过程组成。循环氧化过程可分为氧化、扩散、开裂、剥落4个阶段,且4个阶段往复进行,最终导致了直接烧结SiC在循环氧化过程中的多层氧化层剥落。随氧化温度的升高,SiC氧化速率增加,且更快进入氧化失重阶段;循环氧化周期越短,越易发生局部剥落行为,循环氧化过程受氧化层开裂及剥落影响越严重;循环周期越长,受氧化层开裂及剥落影响推迟,但容易发生氧化层的整体剥落。

关键词 直接烧结SiC循环氧化循环周期氧化温度剥落    
Abstract

The cyclic oxidation performance of the direct-sintered SiC was assessed in air at 1300 ℃ with cyclic period of 5 h, and at 1400 ℃ with cyclic period of 1, 3 and 5 h, respectively, meanwhile, the mass change of the sintered SiC vs cycle nunber was measured with analytical balance. Then the morphology evolution and the formed oxide scales of the direct-sintered SiC were characterized by scanning electron microscope. The results indicate that during the cyclic oxidation, the direct-sintered SiC experienced a two-stage process, i.e. in the early stage the sintered SiC presented a course of parabolic mass gain and then turned to a course of mass loss companied by spallation of oxide scale for long-term oxidation. With the increase of cyclic oxidation temperature, the oxidation rate of direct-sintered SiC increases and the mass loss stage emerges more quickly. The shorter the cyclic period is, the easier the spallation of oxide scale takes place, and the cracking and spallation of oxide scale exerts a more serious influence on the cyclic oxidation process. As the increase of cyclic period, the occurrence of cracking and spallation of oxide scale may be postponed, but in that case, the overall spallation of oxide scale seems easy to take place.

Key wordsdirect-sintered SiC    cyclic oxidation    cyclic period    oxidation temperature    spallation
收稿日期: 2021-02-04     
ZTFLH:  V23  
基金资助:国家科技重大专项(2017-IV-0005-0042)
通讯作者: 江荣     E-mail: rjiang@nuaa.edu.cn
Corresponding author: JIANG Rong     E-mail: rjiang@nuaa.edu.cn
作者简介: 江荣,男,1985年生,博士,副教授

引用本文:

江荣, 张悦, 张磊成, 高希光, 宋迎东. 直接烧结SiC循环氧化行为的试验研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 249-257.
Rong JIANG, Yue ZHANG, Leicheng ZHANG, Xiguang GAO, Yingdong SONG. Experimental Study of Cyclic Oxidation Behavior of Direct-sintered SiC. Journal of Chinese Society for Corrosion and protection, 2022, 42(2): 249-257.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.025      或      https://www.jcscp.org/CN/Y2022/V42/I2/249

图1  样品初始表面形貌和物相分析以及氧化样品宏观形貌与温度循环制度
图2  SiC在1400 ℃不同循环氧化时间下的表面形貌
图3  SiC在1400 ℃下不同循环氧化时间下的氧化层横截面形貌
图4  直接烧结SiC在空气中1400 ℃下周期为1 h的循环氧化动力学曲线
图5  直接烧结SiC在1400 ℃不同循环周期下氧化90 h后氧化层表面形貌
图6  直接烧结SiC在1400 ℃不同循环周期下的循环氧化动力学曲线及初始阶段的拟合曲线
Cyclic periodkpmg2·cm-4·h-1Max Δm/Amg·cm-2Min Δm/Amg·cm-2Max Δm/AΔm/A=0
Time / hCyclic numbersTime / hCyclic numbers
1 h0.0791.601-2.66223232727
3 h0.2633.474-4.65539134214
5 h0.1892.821-14.0043575010
表1  1400 ℃不同循环周期条件下循环氧化实验结果统计
图7  1400 ℃下不同循环周期条件下循环氧化增重达到最高点前的氧化层表面形貌
图 8  直接烧结SiC在不同温度5 h循环周期下循环氧化90 h时表面形貌对比
图9  直接烧结SiC在不同温度下循环氧化动力学曲线
图10  氧化层在存在缺陷前提下受拉伸应力示意图及氧化层开裂之后氧化层与SiC界面上受力情况分析[25]
图11  SiC循环氧化-扩散-开裂-剥落及SiC循环氧化多层氧化层剥落示意图
1 Huang X X, Guo S Q, Yao G C, et al. Research progress of environmental barrier coatings of SiC/SiC composite for aero-engine [J]. Aviat. Maint. Eng., 2017, (2): 28
1 黄璇璇, 郭双全, 姚改成等. 航空发动机SiC/SiC复合材料环境障碍涂层研究进展 [J]. 航空维修与工程, 2017, (2): 28
2 Nasiri N A, Patra N, Ni N, et al. Oxidation behaviour of SiC/SiC ceramic matrix composites in air [J]. J. Eur. Ceram. Soc., 2016, 36: 3293
3 Wang M, Dong Z G, Zhang X Y, et al. Application of continuous fiber reinforced ceramic matrix composites in aeroengine [J]. Aeronaut. Manuf. Technol., 2014, (6): 10
3 王鸣, 董志国, 张晓越等. 连续纤维增强碳化硅陶瓷基复合材料在航空发动机上的应用 [J]. 航空制造技术, 2014, (6): 10
4 Zhang L T, Cheng L F. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites [J]. Acta Mater. Compos. Sin., 2007, 24(2): 1
4 张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨 [J]. 复合材料学报, 2007, 24(2): 1
5 Chen X H, Sun Z G, Niu X M, et al. Research progress of oxidation degradation of SiC/SiC composites [J]. J. Propuls. Technol., 2020, 41: 2143
5 陈西辉, 孙志刚, 牛序铭等. SiC/SiC复合材料氧化退化研究进展 [J]. 推进技术, 2020, 41: 2143
6 Fox D S. Oxidation behavior of chemically‐vapor‐deposited silicon carbide and silicon nitride from 1200o to 1600 ℃ [J]. J. Am. Ceram. Soc., 1998, 81: 945
7 Chen Y H, Jiang L, Sun W Z, et al. Oxidation behavior of pressureless liquid phase sintered SiC [J]. Test. Eval. Inorg. Mater., 2013, 591: 164
8 Song F B, Zhang Q, Wu X. Computer simulation of cyclic oxidation of the Al-Si coating [J]. Corros. Prot., 2002, 23: 523
8 宋复斌, 张琦, 武昕. 铝硅涂层循环氧化的计算机模拟 [J]. 腐蚀与防护, 2002, 23: 523
9 Lei M K, Yang F J, Luo P, et al. Modeling of cyclic oxidation kinetic for high-temperature alloys based on buckling spallation of oxide scale [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 65
9 雷明凯, 杨辅军, 罗鹏等. 基于氧化膜屈曲破坏的高温合金循环氧化动力学模型 [J]. 中国腐蚀与防护学报, 2002, 22: 65
10 Qian Y H, Li M S, Zhang Y M. Cracking and spalling behavior of thin oxide scale [J]. Corros. Sci. Prot. Technol., 2003, 15: 90
10 钱余海, 李美栓, 张亚明. 氧化膜开裂和剥落行为 [J]. 腐蚀科学与防护技术, 2003, 15: 90
11 Evans H E, Hilton D A, Holm R A, et al. The development of localized pits during stainless steel oxidation [J]. Oxid. Met., 1980, 14: 235
12 Evans H E, Weinberg W H. A vibrational study of zirconium tetraborohydride supported on aluminum oxide. 1. Interactions with deuterium, deuterium oxide, and water vapor [J]. J. Am. Chem. Soc., 1980, 102: 2548
13 Evans H E, Hilton D A, Holm R A, et al. The influence of a titanium nitride dispersion on the oxidation behavior of 20%Cr-25%Ni stainless steel [J]. Oxid. Met., 1978, 12: 473
14 Evans H E, Hilton D A, Holm R A. Chromium-depleted zones and the oxidation process in stainless steels [J]. Oxid. Met., 1976, 10: 149
15 Opila E J, Fox D S. Cyclic oxidation of monolithic SiC and Si3N4 materials [A]. Proceedings of the 17th Annual Conference on Composites and Advanced Ceramics Materials [C]. Cocoa Beach, 1993, 367
16 Smialek J L. Universal characteristics of an interfacial spalling cyclic oxidation model [J]. Acta Mater., 2004, 52: 2111
17 Smialek J L. Cyclic oxidation modeling and life prediction [J]. Mater. Sci. Forum, 2004, 461-464: 663
18 Smialek J L. A deterministic interfacial cyclic oxidation spalling model [J]. Acta Mater., 2003, 51: 469
19 Evans H E. Cracking and spalling of protective oxide layers [J]. Mater. Sci. Eng., 1989, 120/121A: 139
20 Lins V F C, Castro M M R, Domingues R Z, et al. High temperature cyclic oxidation resistance of iron chromium base alloys [J]. Chem. Eng. Technol., 2010, 33: 334
21 Vialas N, Monceau D. Substrate effect on the high temperature oxidation behavior of a Pt-modified aluminide coating. part II: Long-term cyclic-oxidation tests at 1,050 ℃ [J]. Oxid. Met., 2007, 68: 223
22 Riffard F, Buscail H, Caudron E, et al. Yttrium addition effect on isothermal and cyclic high temperature oxidation behaviour of 304 stainless steel [J]. Surf. Eng., 2004, 20: 440
23 Riffard F, Buscail H, Caudron E, et al. Yttrium sol-gel coating effects on the cyclic oxidation behaviour of 304 stainless steel [J]. Corros. Sci., 2003, 45: 2867
24 Bull S J, Jones A M, McCabe A R. Residual stress in ion-assisted coatings [J]. Surf. Coat. Technol., 1992, 54/55: 173
25 Nicholls J R, Evans H E, Saunders S R J. Fracture and spallation of oxides [J]. Mater. High Temperat., 1997, 14: 5
26 Strawbridge A, Evans H E, Ponton C B. Spallation of oxide scales from NiCrAlY overlay coatings [J]. Mater. Sci. Forum, 1997, 251-254: 365
27 Hancock P, Nicholls J R. Failure of oxide scales [J]. Mater. High Temperat., 1994, 12: 209
28 Nicholls J R, Hancock P, Al Yasiri L H. Optimising oxidation resistance of MCrAl coating systems using vapour phase alloy design [J]. Mater. Sci. Technol., 1989, 5: 799
29 Evans H E. Spallation of oxide from stainless steel AGR nuclear fuel cladding: mechanisms and consequences [J]. Mater. Sci. Technol., 1988, 4: 414
30 Osgerby S, Berriche-Bouhanek K, Evans H E. Tensile cracking of a chromia layer on a stainless steel during thermal cycling with hold periods [J]. Mater. Sci. Eng., 2005, 412A: 182
31 Lowell C E, Barrett C A, Palmer R W, et al. COSP: A computer model of cyclic oxidation [J]. Oxid. Met., 1991, 36: 81
[1] 李瑞涛, 肖博, 刘晓, 朱忠亮, 程义, 李俊菀, 曹杰玉, 丁海民, 张乃强. 低合金耐热钢T23在高温超临界CO2环境中的腐蚀特性研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 327-334.
[2] 曹敏, 刘莉, 余钟芬, 李瑛, 王福会. 2A02铝合金在模拟海洋大气环境中的剥蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 502-510.
[3] 肖斌,向军淮,张洪华. 四元Fe-Cu-Ni-Al合金900 ℃下的恒温及循环氧化行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 69-73.
[4] 赵凤, 鲁法云, 穆楠, 郭富安, 张莉. 7050铝合金板材晶粒结构与抗剥落腐蚀性能的关系[J]. 中国腐蚀与防护学报, 2015, 35(5): 423-428.
[5] 暨波,张新明,张卓夫,叶凌英,李文健. Yb对2519A铝合金抗剥落腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(3): 279-286.
[6] 陈倩,辛丽,滕英元,朱圣龙,王福会. 氮化物涂层对钛合金抗循环氧化性能的影响[J]. 中国腐蚀与防护学报, 2012, 32(1): 7-12.
[7] 王月; 王政红; 付自来; 张海峰 . 含钪Al-Mg合金的抗应力腐蚀和剥落腐蚀性能研究[J]. 中国腐蚀与防护学报, 2005, 25(4): 218-221 .
[8] 金光熙; 乔利杰; 高克玮; 桥本健纪 ; 褚武扬 . Al60Mn13Ti25V2金属间化合物的高温氧化行为研究[J]. 中国腐蚀与防护学报, 2004, 24(3): 129-134 .
[9] 宋复斌; 张琦 . 常温腐蚀对Al-Si涂层循环氧化行为的影响[J]. 中国腐蚀与防护学报, 2003, 23(3): 183-186 .
[10] 雷明凯; 杨辅军; 罗鹏; 朱小鹏 . 基于氧化膜屈曲破坏的高温合金循环氧化动力学模型[J]. 中国腐蚀与防护学报, 2002, 22(2): 65-68 .
[11] 张重远; 李美恒; 孙晓峰 . 单晶高温合金热障涂层的循环氧化行为[J]. 中国腐蚀与防护学报, 2002, 22(2): 111-114 .
[12] 袁福河; 孙晓峰; 管恒荣 . 钴基高温合金的循环氧化行为研究[J]. 中国腐蚀与防护学报, 2002, 22(2): 115-117 .
[13] 耿树江; 王福会; 朱圣龙 . 溅射纳米晶IN738合金涂层的抗循环氧化行为[J]. 中国腐蚀与防护学报, 2001, 21(6): 334-339 .
[14] 胡武生;李铁藩;沈嘉年. 几种Ni-Cr-Al墓低偏析高温合金的抗氧化性能研究[J]. 中国腐蚀与防护学报, 1996, 16(4): 293-297.