Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (3): 289-294    DOI: 10.11902/1005.4537.2019.185
  研究报告 本期目录 | 过刊浏览 |
石墨烯改性Ti/IrTaSnSb-G金属氧化物阳极在低温和低盐NaCl溶液中的电化学性能
王廷勇1,2(), 董如意2, 许实2, 王辉2
1 洛阳船舶材料研究所 洛阳 471000
2 青岛双瑞海洋环境工程股份有限公司 青岛 266101
Electrochemical Properties of Graphene Modified Mixed Metal Oxide Anodes of Ti/IrTaSnSb-G in NaCl Solutions at Low Temperature
WANG Tingyong1,2(), DONG Ruyi2, XU Shi2, WANG Hui2
1 Luoyang Ship Material Research Institute, Luoyang 471000, China
2 Sunrui Marine Environment Engineering Co. , Ltd. , Qingdao 266101, China
全文: PDF(3347 KB)   HTML
摘要: 

采用热分解法制备了添加石墨烯的Ti/IrTaSnSb-G金属氧化物阳极,测试了阳极在1.5%NaCl溶液中的电化学性能,并通过SEM及EDS进行了显微形貌和成分分析,研究了石墨烯对阳极性能的影响。结果表明:石墨烯促进了IrO2在阳极表面偏析,其晶粒结构主要呈枝状,并存在二次结晶现象,形成纳米针状结构。此外,石墨烯阻碍了涂层中裂纹的扩展,使得阳极表面的裂纹更多、更细小,从而增大了阳极的活性表面积,进而提高了阳极的电化学活性。当石墨烯添加量为0.6 g/L时,氧化物阳极的性能改善最佳,在低温和低盐NaCl溶液中的电流效率分别提高了9%和13%。

关键词 石墨烯氧化物阳极电化学活性电流效率    
Abstract

Graphene-modified mixed metal oxide anodes of Ti/IrTaSnSb-G were prepared by thermal decomposition, and then the electrochemical performance of the anodes in NaCl solutions was examined via electrochemical workshop type PAR2273 and SEM equipped with EDS in terms of the effect of graphene on the performance of anodes. The results show that the graphene promotes the segregation of IrO2, which then resulted in the formation of dendritic structure on the surface of the anodes, in the meanwhile, secondary crystallization phenomenon could induce the formation of nano-needle structure of IrO2, which increases the active surface areas and improves subsequently the electrocatalytic activity of the anodes. Besides, the electrolysis current efficiency of the electrode with 0.6 g/L graphene increases 9% in 3.5%NaCl solution at 5 ℃ and 13% in 1.5%NaCl solution at 15 ℃ respectively.

Key wordsgraphene    oxide anode    electrochemical activity    current efficiency
收稿日期: 2019-10-20     
ZTFLH:  O646  
通讯作者: 王廷勇     E-mail: wangty@sunrui.net
Corresponding author: WANG Tingyong     E-mail: wangty@sunrui.net
作者简介: 王廷勇,男,1970年生,研究员

引用本文:

王廷勇, 董如意, 许实, 王辉. 石墨烯改性Ti/IrTaSnSb-G金属氧化物阳极在低温和低盐NaCl溶液中的电化学性能[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
Tingyong WANG, Ruyi DONG, Shi XU, Hui WANG. Electrochemical Properties of Graphene Modified Mixed Metal Oxide Anodes of Ti/IrTaSnSb-G in NaCl Solutions at Low Temperature. Journal of Chinese Society for Corrosion and protection, 2020, 40(3): 289-294.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.185      或      https://www.jcscp.org/CN/Y2020/V40/I3/289

图1  Ti/IrTaSnSb-G anodes阳极的红外光谱
图2  不同IrTaSnSb-G阳极的显微形貌
Graghene content / g·L-1IrTaSnSb
010.965.903.763.13
0.28.994.593.502.11
0.48.693.793.092.13
0.68.673.362.971.86
0.89.094.262.791.96
1.010.034.332.642.12
表1  不同Ti/IrTaSnSb-G阳极表面成分
图3  不同Ti/IrTaSnSb-G阳极的循环伏安曲线
图4  不同Ti/IrTaSnSb-G阳极的循环伏安电荷
图5  不同Ti/IrTaSnSb-G阳极在1.5%NaCl溶液中的极化曲线
图7  不同Ti/IrTaSnSb-G阳极的Nyqusit图
图6  Ti/IrTaSnSb-G阳极在1.5%NaCl溶液中的等效电路图
Graphene content / g·L-1Rs / Ω·cm2Qf / Ω-1·cm-2·s-nRf / Ω·cm2n1Qdl / Ω-1·cm-2·s-nRct / Ω·cm2n2
03.1171.572×10-24.0180.69785.028×10-115.9050.6707
0.23.6815.343×10-22.9120.71936.808×10-110.3010.6941
0.43.5411.071×10-12.7180.67747.228×10-19.9050.6829
0.63.2832.343×10-12.3120.69598.808×10-18.3010.7342
0.83.7761.834×10-12.2660.71717.906×10-18.7280.6547
1.03.1741.046×10-12.2620.72587.863×10-19.4420.6314
表2  不同烧结温度Ti/IrTaSnSb-G阳极电化学阻抗等效电路拟合值
图8  不同阳极在5 ℃的3.5%NaCl溶液和15 ℃的1.5%NaCl溶液中的电流效率曲线
图9  不同Ti/IrTaSnSb-G在40 ℃的0.5 mol·L-1硫酸溶液中的强化电解寿命
[1] Stehouwer P P, Buma A, Peperzak L. A comparison of six different ballast water treatment systems based on UV radiation, electrochlorination and chlorine dioxide [J]. Environ. Technol., 2015, 36: 2094
[2] Marshall A T, Haverkamp R G. Nanoparticles of IrO2 or Sb-SnO2 increase the performance of iridium oxide DSA electrodes [J]. J. Mater. Sci., 2012, 47: 1135
doi: 10.1007/s10853-011-5958-x
[3] Kaur P, Kushwaha J P, Sangal V K. Evaluation and disposability study of actual textile wastewater treatment by electro-oxidation method using Ti/RuO2 anode [J]. Process Saf. Environ. Prot., 2017, 111: 13
[4] Trasatti S. Electrocatalysis: Understanding the success of DSA® [J]. Electrochim. Acta, 2000, 45: 2377
[5] Ardizzone S, Bianchi C L, Cappelletti G, et al. Composite ternary SnO2-IrO2-Ta2O5 oxide electrocatalysts [J]. J. Electroanal. Chem., 2006, 589: 160
doi: 10.1016/j.jelechem.2006.02.004
[6] Wei Z Q, Wang D B, Kim S, et al. Nanoscale tunable reduction of graphene oxide for graphene electronics [J]. Science, 2010, 328: 1373
doi: 10.1126/science.1188119
[7] Kumar G V, Agarwal S, Asif M, et al. Application of response surface methodology to optimize the adsorption performance of a magnetic graphene oxide nanocomposite adsorbent for removal of methadone from the environment [J]. J. Colloid Interface Sci., 2017, 497: 193
doi: 10.1016/j.jcis.2017.03.006
[8] Pocrifka L A, Gonçalves C, Grossi P, et al. Development of RuO2-TiO2 (70-30) mol% for pH measurements [J]. Sens. Actuator. B-Chem., 2006, 113: 1012
doi: 10.1016/j.snb.2005.03.087
[9] Hu J M, Sun X J, Hou Y Y, et al. Degradation characteristics of IrO2-type DSA® in methanol aqueous solutions [J]. Electrochim. Acta, 2008, 53: 3127
doi: 10.1016/j.electacta.2007.11.045
[10] Xu L K, Xin Y L, Wang J T. A comparative study on IrO2-Ta2O5 coated titanium electrodes prepared with different methods [J]. Electrochim. Acta, 2009, 54: 1820
doi: 10.1016/j.electacta.2008.10.004
[11] Ge B Y, Wang H T, Xu S, et al. Property of Ti/IrO2-Ta2O5-SnO2-Sb2O5 oxide anodes for ballast water treatment system [J]. Mater. Prot., 2016, 49(4): 10
[11] (葛宝玉, 王海涛, 许实等. 船舶压载水处理用Ti/IrO2-Ta2O5-SnO2-Sb2O5氧化物阳极的性能 [J]. 材料保护, 2016, 49(4): 10)
[12] Huang Y T, Peng Q. Progress in the study of the Ti-based metal oxide anodes [J]. Total Corros. Control, 2006, 20(1): 10
[12] (黄运涛, 彭乔. 钛基金属氧化物阳极的研究进展 [J]. 全面腐蚀控制, 2006, 20(1): 10)
[13] Xu S, Fu H T, Liu G Z, et al. Research on the influence of seawater temperature on the efficiency of production of chlorine by electrolysis [J]. J. Chem. Ind. Eng., 2013, 34(5): 57
[13] (许实, 付洪田, 刘光洲等. 海水温度对电解制氯效率的影响研究 [J]. 化学工业与工程技术, 2013, 34(5): 57)
[14] Ning H L, Xin Y L, Xu L K, et al. Properties of IrO2-Ta2O5 coated titanium anodes modified with graphene [J]. Rare Met. Mater. Eng., 2016, 23: 946
[14] (宁慧利, 辛永磊, 许立坤等. 含石墨烯IrO2-Ta2O5涂层钛阳极性能改进研究 [J]. 稀有金属材料与工程, 2016, 23: 946)
[15] Trieu V, Schley B, Natter H, et al. RuO2-based anodes with tailored surface morphology for improved chlorine electro-activity [J]. Electrochim. Acta, 2012, 78: 188
doi: 10.1016/j.electacta.2012.05.122
[16] Lačnjevac U C, Radmilović V V, Radmilović V R, et al. RuOx nanoparticles deposited on TiO2 nanotube arrays by ion-exchange method as electrocatalysts for the hydrogen evolution reaction in acid solution [J]. Electrochim. Acta, 2015, 168: 178
doi: 10.1016/j.electacta.2015.04.012
[17] Herrada R A, Medel A, Manríquez F, et al. Preparation of IrO2-Ta2O5|Ti electrodes by immersion,painting and electrophoretic deposition for the electrochemical removal of hydrocarbons from water [J]. J. Hazard. Mater., 2016, 319: 102
doi: 10.1016/j.jhazmat.2016.02.076
[18] Karlsson R K B, Hansen H A, Bligaard T, et al. Ti atoms in Ru0.3Ti0.7O2 mixed oxides form active and selective sites for electrochemical chlorine evolution [J]. Electrochim. Acta, 2014, 146: 733
doi: 10.1016/j.electacta.2014.09.056
[19] Hsiao H Y, Chuang M C. Eliminating evolved oxygen through an electro-flocculation efficiently prompts stability and catalytic kinetics of an IrOx·nH2O colloidal nanostructured electrode for water oxidation [J]. Electrochim. Acta, 2014, 137: 190
doi: 10.1016/j.electacta.2014.06.003
[20] Rosestolato D, Fregoni J, Ferro S, et al. Influence of the nature of the electrode material and process variables on the kinetics of the chlorine evolution reaction. The case of IrO2-based electrocatalysts [J]. Electrochim. Acta, 2014, 139: 180
doi: 10.1016/j.electacta.2014.07.037
[21] Sun R X, Xu H B, Wan N F, et al. Syntheses of IrOx-TiO2 Nano-powers from TiN via impregnation-thermal decomposition method and its characterization [J]. Chem. J. Chin. Univ., 2007, 28: 904
[21] (孙仁兴, 徐海波, 万年坊等. TiN浸渍-热分解法制备IrOx-TiO2粉体催化剂及其表征 [J]. 高等学校化学学报, 2007, 28: 904)
[22] Xu H B, Lu Y H, Li C H, et al. A novel IrO2 electrode with iridium-titanium oxideinterlayers from a mixture of TiN nanoparticle and H2IrCl6 solution [J]. J. Appl. Electrochem., 2010, 40: 719
doi: 10.1007/s10800-009-0049-2
[23] Wang Q, Wang R, Xu H B, et al. Preparation and electrocatalytic properties of Ir0.08Ti0.92O2 and Pt/Ir0.08Ti0.92O2 [J]. Chem. J. Chin. Univ., 2014, 35: 1962
[23] (王强, 王锐, 徐海波. Ir0.08Ti0.92O2及其载Pt催化剂的制备与电催化性能 [J]. 高等学校化学学报, 2014, 35: 1962)
doi: 10.7503/cjcu20140209
[24] Hu J Z, Xu H B, Lu Y H, et al. Ti/IrO2-coated electrode with iridium-titanium oxide interlayer by TiN Nano-particle oxidation [J]. Chin. J. Catal., 2008, 29: 1253
[24] (胡杰珍, 徐海波, 芦永红等. 纳米TiN粉体氧化制备铱钛氧化物为中间层的钛基氧化铱电极 [J]. 催化学报, 2008, 29: 1253)
[25] Xu H B, Lu Y H, Li C H, et al. A novel IrO2 electrode with iridium-titanium oxide interlayers from a mixture of TiN nanoparticle and H2IrCl6 solution [J]. J. Appl. Electrochem., 2010, 40: 719
doi: 10.1007/s10800-009-0049-2
[26] Cestarolli D T, De Andrade A R. Electrochemical and morphological properties of Ti/Ru0.3Pb0.7-xTixO2-coated electrodes [J]. Electrochim. Acta, 2003, 48: 4137
doi: 10.1016/S0013-4686(03)00581-4
[27] Chen D, Tang L H, Li J H. Graphene-based materials in electrochemistry [J]. Chem. Soc. Rev., 2010, 39: 3157
doi: 10.1039/b923596e
[1] 曹京宜, 王智峤, 李亮, 孟凡帝, 刘莉, 王福会. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
[2] 韦鉴峰, 付洪田, 王廷勇, 许实, 王辉, 王海涛. 烧结温度对含石墨烯Ti/IrTaSnSb金属氧化物阳极性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 248-254.
[3] 赵国强, 魏英华, 李京. Al-Zn-In牺牲阳极在不同工作电流密度下电流效率及溶解机制的研究[J]. 中国腐蚀与防护学报, 2015, 35(1): 69-74.
[4] 侯军才,梁国军,乔锦华,张秋美. 低Mn含量高电位镁合金牺牲阳极[J]. 中国腐蚀与防护学报, 2012, 32(5): 403-406.
[5] 李威力,闫永贵,陈光,马力. 合金元素对铝基牺牲阳极性能的影响[J]. 中国腐蚀与防护学报, 2012, 32(2): 127-132.
[6] 侯军才,张秋美. 高电位镁牺牲阳极研究进展[J]. 中国腐蚀与防护学报, 2011, 31(2): 81-85.
[7] 孔小东;丁振斌;朱梅五. 含Mg铝合金牺牲阳极的电流效率及其影响因素[J]. 中国腐蚀与防护学报, 2010, 30(1): 6-10.
[8] 郝小军; 宋诗哲 . 电偶电流评价牺牲阳极性能[J]. 中国腐蚀与防护学报, 2005, 25(3): 176-178 .
[9] 齐公台; 郭稚弧; 屈钧娥 . 合金元素Mg对含RE铝阳极组织与性能的影响[J]. 中国腐蚀与防护学报, 2001, 21(4): 220-224 .