Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (2): 197-202    DOI: 10.11902/1005.4537.2017.044
  研究报告 本期目录 | 过刊浏览 |
复合电解液中AZ31B镁合金的放电特性及电压滞后
陈琳1,2(), 钟福荣1, 昝金龙1
1 四川理工学院材料科学与工程学院 自贡 643000
2 四川理工学院 材料腐蚀与防护四川省重点实验室 自贡 643000
Discharge Property and Voltage Delay of AZ31B Mg Alloy in Mg(NO3)2/Mg(ClO4)2 Composite Electrolyte
Lin CHEN1,2(), Furong ZHONG1, Jinlong ZAN1
1.College of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, China;
2.Material Corrosion and Protection Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Zigong 643000, China;
全文: PDF(1944 KB)   HTML
摘要: 

通过计时电位法和电化学阻抗谱技术研究Mg(NO3)2+Mg(ClO4)2复合电解液中AZ31B镁合金电极的放电性能和电压滞后,并初步探讨了镁合金电极表面腐蚀膜的结构变化。结果表明:AZ31B合金在Mg(NO3)2:Mg(ClO4)2溶液体积比为72∶28和74∶26时恒流放电曲线平稳,在2.5和6 mA·cm-2放电时稳定电位均可达到约-1.24 V,电压滞后时间为5~8 s;放电后表面膜的化学基团与放电前相同,放电破坏了镁合金电极表面腐蚀膜,造成连续串珠状点蚀坑,其膜电阻消失,电荷转移电阻减小至375 Ω·cm2

关键词 AZ31B镁合金复合电解液放电腐蚀膜电压滞后    
Abstract

In neutral and acidic solution, Mg reacts with water and release hydrogen, which reduces the utilization rate of electrode and brings difficulties to the assembly of the battery. In the alkaline solution, the Mg-surface would form a dense protective film, which make the electrode passivation and prevents discharging. In order to develop proper Mg-alloy suitable for battery electrolytes, the discharge properties and voltage delay of AZ31B Mg-alloy in compound electrolytes with different volume ratio of Mg(NO3)2 to Mg(ClO4)2 were studied by means of chronopotentiometry and electrochemical impedance spectroscopy and the corrosion products-films formed on the surface of AZ31B Mg-alloy were examined by means of SEM and infra-red spectrometer. Results show that in solutions with volume ratios of Mg(NO3)2 to Mg(ClO4)2 are 72:28 and 74:26 respectively, the discharge curves of AZ31B Mg-alloy are smooth and steady with stable potentials about -1.24 V (2.5 and 6 mA·cm-2) and the delay time 5~8 s. Chemical groups of the corrosion products-film after discharge is the same as before. However, the surface film of corrosion products has been destroyed by discharge process, resulting in continuous beads-like corrosion pits, therewith the film resistance would disappear and the charge transfer resistance decreases to 375 Ω·cm2.

Key wordsAZ31B Mg alloy    composite electrolyte    discharge    corrosion film    voltage delay
收稿日期: 2017-03-25     
基金资助:四川理工学院人才引进项目 (2015CR58)
作者简介:

作者简介 陈琳,女,1975年生,博士

引用本文:

陈琳, 钟福荣, 昝金龙. 复合电解液中AZ31B镁合金的放电特性及电压滞后[J]. 中国腐蚀与防护学报, 2018, 38(2): 197-202.
Lin CHEN, Furong ZHONG, Jinlong ZAN. Discharge Property and Voltage Delay of AZ31B Mg Alloy in Mg(NO3)2/Mg(ClO4)2 Composite Electrolyte. Journal of Chinese Society for Corrosion and protection, 2018, 38(2): 197-202.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.044      或      https://www.jcscp.org/CN/Y2018/V38/I2/197

图1  AZ31B镁合金在Mg(NO3)2+Mg(ClO4)2电解液中的放电曲线 (2.5 mAcm-2)
Mg(NO3)2∶Mg(ClO4)2 Es (SCE)V tds Mg(NO3)2:Mg(ClO4)2 Es (SCE)V tds
5∶95 -1.206 4.6 60:40 -1.232 9.0
10∶90 -1.190 4.3 70:30 -1.291 11.2
20∶80 -1.235 8.8 80:20 -1.280 12.5
30∶70 -1.248 18.1 90:10 -1.265 13.0
40∶60 -1.270 8.9 95:5 -1.272 12.4
50∶50 -1.236 14.0 --- --- ---
表1  AZ31B镁合金的稳定电位和滞后时间
图2  AZ31B镁合金在不同配比的Mg(NO3)2+Mg(ClO4)2电解液中的放电曲线
图3  AZ31B镁合金在复合电解液中放电的Es和td值
图4  镁合金放电前后的SEM像
图5  镁合金放电前后表面膜的红外光谱
图6  AZ31B镁合金在复合电解液中的EIS谱
图7  AZ31B镁合金阻抗谱等效电路
[1] Mu W Y, Li Z X, Du J H, et al.Development and application of magnesium batteries[J]. Mater. Rev., 2011, 25(13): 35(慕伟意, 李争显, 杜继红等. 镁电池的发展及应用[J]. 材料导报, 2011, 25(13): 35)
[2] Yao Y F, Chen C G, Liu Y P, et al.Research progress of magnesium battery[J]. Mater. Rev., 2009, 23(19): 119(尧玉芬, 陈昌国, 刘渝萍等. 镁电池的研究进展[J]. 材料导报, 2009, 23(19): 119)
[3] Yang Q L, Chen L, Xu J, et al.Study of the corrosion and surface film growth on AZ63 magnesium alloy in MgSO4 solution[J]. J. Electrochem. Soc., 2017, 164(6): C324
[4] Yang Q L, Xu J, Chen L, et al.The effects of NaHCO3 on the voltage delay of Mg cell with AZ31B magnesium alloy in Mg(ClO4)2 electrolytic solution[J]. J. Electrochem. Soc., 2017, 164(4): A630
[5] Xu J, Yang Q L, Javed M S, et al.The effects of NaF concentration on electrochemical and corrosion behavior of AZ31B magnesium alloy in a composite electrolyte[J]. RSC Advances., 2017, 7(10): 5880
[6] Sivashanmugam A, Kumar T P, Renganathan N G, et al.Performance of a magnesium- lithium alloy as an anode for magnesium batteries[J]. J. Appl. Electrochem., 2004, 34(11): 1135
[7] Gao C Y, Lu Y H, Xu H B.Electrochemical properties of Mg-Ga-Hg alloys applied in dissolved-oxygen seawater battery[J]. Period. Ocean Univ. China, 2015, 45(10): 69(高春燕, 芦永红, 徐海波. 海水电池用Mg-Ga-Hg合金的电化学性能[J]. 中国海洋大学学报, 2015, 45(10): 69)
[8] Si Y J, Xiong Z P, Chen C G, et al.Inhibiting ability of sodium dodecyl benzene sulfonate to AZ31 magnesium alloy[J]. Rare Met. Mater. Eng., 2007, 36(12): 2244(司玉军, 熊中平, 陈昌国等. 十二烷基苯磺酸钠对AZ31镁合金缓蚀作用研究[J]. 稀有金属材料与工程, 2007, 36(12): 2244)
[9] Chen C G, Si Y J, Yu D M, et al.Electrochemical behavior of AZ31 magnesium alloy in MgSO4 solution[J]. Chin. J. Nonferrous Met., 2006, 16(5): 781(陈昌国, 司玉军, 余丹梅等. AZ31镁合金在MgSO4溶液中的电化学行为[J]. 中国有色金属学报, 2006, 16(5): 781)
[10] Shi Y G, Zhang Y, Hu S F, et al.Electrochemical behavior of AZ31 alloy as anode material for magnesium battery[J]. Corros. Prot., 2012, 33(12): 1051(史永刚, 张娅, 胡少峰等. AZ31作为镁电池负极材料的电化学性能[J]. 腐蚀与防护, 2012, 33(12): 1051)
[11] Xiong Y Y, Zhang Y, Hu S F, et al.Effects of additions of La(CH3COO)3 and NaF on electrochemical behavior of AZ31 alloys in Mg(ClO4)2 solution[J]. J. Chin. Soc. Corros. Prot., 2013, 33(3): 241(熊媛媛, 张娅, 胡少峰等. 添加剂La(CH3COO)3和NaF对AZ31在Mg(ClO4)2溶液中电化学性能的影响[J]. 中国腐蚀与防护学报, 2013, 33(3): 241)
[12] Kumar B V R, Sathyanarayana S. The delayed action of magnesium anodes in primary batteries: Part I. Experimental studies[J]. J. Power Sources, 1983, 10(3): 219
[13] Chen L, Chen C G, Wang N N, et al.Electrochemical and structural characterization of AZ63 alloy surface film in MgSO4 solution[J]. J. Appl. Electrochem., 2014, 44(7): 773
[14] Ma Z Q, Pang X, Zuo L, et al.Mechanism of activation of anode of Mg alloy applied in seawater battery[J]. Surf. Technol., 2008, 37(1): 5(马正青, 庞旭, 左列等. 镁海水电池阳极活化机理研究[J]. 表面技术, 2008, 37(1): 5)
[15] Deng L, Chen L, Yang Q L, et al.The Influence of pulse current on the voltage delay of AZ21 magnesium electrodealloy[J]. Chin. J. Eng., 2015, 37(10): 1358(邓玲, 陈琳, 杨巧玲等. 脉冲电流对AZ21镁电极电压滞后的影响[J]. 工程科学学报, 2015, 37(10): 1358)
[1] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[2] 李亚琼,马景灵,王广欣,朱宇杰,宋永发,张景丽. NaPO3与SDBS缓蚀剂对AZ31镁合金空气电池在NaCl电解液中放电性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[3] 王海媛, 卫英慧, 杜华云, 刘宝胜, 郭春丽, 侯利锋. 绿色缓蚀剂SDDTC对AZ31B镁合金的缓蚀作用及吸附行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 62-67.
[4] 孙冲, 王勇, 孙建波, 蒋涛, 赵卫民, 张彦春. 含杂质超临界CO2输送管线腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2015, 35(5): 379-385.
[5] 崔学军, 白成波, 朱一波, 闵虹云, 王荣, 林修洲. Mn(NO3)2/Na2MoO4对AZ31B镁合金表面磷化膜微观形貌及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2014, 34(5): 477-482.
[6] 熊媛媛 张 娅 胡少峰 陈秋荣, 谢有桃. 添加剂La(CH3COO)3和NaF对AZ31在
Mg(ClO4)2溶液中电化学性能的影响
[J]. 中国腐蚀与防护学报, 2013, 33(3): 241-244.
[7] 周华茂 王俭秋 张波 韩恩厚 臧启山. 轧制AZ31B镁合金腐蚀疲劳过程中的声发射信号分析[J]. 中国腐蚀与防护学报, 2009, 29(2): 81-87.
[8] 吴超云 . AZ31B镁合金表面硅烷处理研究[J]. 中国腐蚀与防护学报, 2008, 28(3): 146-150 .
[9] 袁庆龙; 张跃飞; 苏永安; 池成忠; 唐宾; 徐重 . 纯铜等离子渗钛层的氧化机理分析[J]. 中国腐蚀与防护学报, 2005, 25(2): 102-105 .
[10] 张弘; 苏永安; 古凤英 . 钨在不同温度下形成的辉光离子渗镀层的特性[J]. 中国腐蚀与防护学报, 2000, 20(1): 59-63 .
[11] 贺志勇; 赵晋香; 高原 . 等离子镍铬表面合金化合金元素利用率研究[J]. 中国腐蚀与防护学报, 1999, 19(6): 345-350 .
[12] 高原;贺志勇;徐重. 空心阴极辉光放电膏剂离子渗铝[J]. 中国腐蚀与防护学报, 1997, 17(4): 286-290.
[13] 韩克平;方景礼. 用XPS和AES研究锌表面彩色防腐蚀膜[J]. 中国腐蚀与防护学报, 1997, 17(1): 41-45.