Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (5): 467-473    DOI: 10.11902/1005.4537.2014.191
  本期目录 | 过刊浏览 |
聚合物改性砂浆中钢筋的电化学行为及聚合物改性混凝土抗Cl-渗透性
吕晨曦,魏英华(),李京,孙超
 
Electrochemical Characteristics of Rebar in Polymer-modified Mortar and Resistance to Chloride Ion Penetration of Polymer-modified Concrete
Chenxi LV,Yinghua WEI(),Jing LI,Chao SUN
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(1378 KB)   HTML
  
摘要: 

采用电化学阻抗法 (EIS)、线性极化法 (LP) 与腐蚀电位法研究了钢筋在聚合物改性砂浆 (PMM) 中的电化学行为并与在普通砂浆 (CM) 中对比。结果表明,聚合物改性砂浆中钢筋表面双电层传递电阻较普通砂浆中增长慢但养护后期双电层传递电阻较大;聚合物改性砂浆中钢筋的腐蚀电位较在普通砂浆中更低;线性极化法的测试结果与电化学阻抗法接近;采用快速Cl-迁移系数法 (RCM) 研究了聚合物改性混凝土 (PMC) 的抗Cl-渗透性能,并比较了不同配比聚合物改性混凝土的力学性能。结果表明,聚合物改性混凝土的抗Cl-渗透性与力学性能较普通混凝土都有大幅提高。

关键词 聚合物改性砂浆Cl-渗透性电化学阻抗谱    
Abstract

The electrochemical characteristics of rebar in a polymer-modified mortar (PMM) and a common mortar (CM) were comparatively studied by means of electrochemical impedance spectroscopy (EIS), linear polarization (LP) and open circuit potential measurements. The result showed
that the formation rate of passive film on the rebar steel in PMM was slower than that in CM. After the passive film was completely formed, the impedance of the rebar steel in PMM was larger than that in CM. The effect of polymer modification on the resistance to chloride ion penetration of polymer-modified concret (PMC) was evaluated by rapid chloride diffusion coefficient method (RCM)and which on the mechanical property of PMC was also examined. It showed that the addition of polymer can clearly enhanced the resistance to chloride ion penetration and also the mechanical property of the modified concrete.

Key wordspolymer-modified mortar    Cl-    penetration    electrochemical impedance spectroscopy
    
ZTFLH:     

引用本文:

吕晨曦, 魏英华, 李京, 孙超. 聚合物改性砂浆中钢筋的电化学行为及聚合物改性混凝土抗Cl-渗透性[J]. 中国腐蚀与防护学报, 2015, 35(5): 467-473.
Chenxi LV, Yinghua WEI, Jing LI, Chao SUN. Electrochemical Characteristics of Rebar in Polymer-modified Mortar and Resistance to Chloride Ion Penetration of Polymer-modified Concrete. Journal of Chinese Society for Corrosion and protection, 2015, 35(5): 467-473.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.191      或      https://www.jcscp.org/CN/Y2015/V35/I5/467

图1  聚合物改性砂浆和混凝土拌合流程图
Classification Polymer/Cement Water/Cement Sand/Cement Gravel/Cement Defoamer/Polymer
PMM 0 0.4 2 --- ---
0.15 0.4 2 --- 0.01
PMC 0 0.4 2 3.2 ---
0.03~0.15 0.4 2 3.2 0.01
表1  PMM/PMC配合比
图2  RCM实验装置图
图3  CM试块中钢筋的Nyquist图和Bode图
图4  PMM试块中钢筋的Nyquist图和Bode图
图5  钢筋在CM和PMM中的等效电路
Dosage of polymer RS / Ωcm2 R1 / Ωcm2 Q1 / Fcm-2 n1 R2 / Ωcm2 Q2 / Fcm-2 n2 Ecorr / %
0 1.245×10-2 2040 8.82×10-7 0.410 4.06×106 2.29×10-5 0.887 3.946×10-2
0.15 0.01 2654 1.59×10-7 0.590 6.37×106 2.14×10-5 0.920 5.114×10-3
表2  EIS拟合结果
图6  CM中钢筋阻抗谱随时间变化
图7  PMM中钢筋阻抗谱随时间变化
Time CM PMM
d R2 / Ωcm2 Q2 / Fcm-2 n2 R2 / Ωcm2 Q2 / Fcm-2 n2
2 3.82×105 3.46×10-5 0.870 1.36×105 5.33×10-5 0.821
7 1.27×106 2.94×10-5 0.869 4.39×105 4.58×10-5 0.870
10 1.93×106 2.81×10-5 0.865 7.50×105 4.54×10-5 0.867
14 4.12×106 2.48×10-5 0.885 9.80×105 4.26×10-5 0.880
21 3.98×106 2.46×10-5 0.882 1.83×106 3.28×10-5 0.890
28 4.03×106 2.46×10-5 0.882 4.56×106 2.49×10-5 0.913
35 4.06×106 2.29×10-5 0.887 6.37×106 2.14×10-5 0.921
表3  CM和PMM钢筋表面EIS拟合结果
图8  钢筋在CM和PMM中R2变化规律比较
图9  线性极化法与电化学阻抗谱法所测阻抗的比较
图10  CM和PMM中钢筋的腐蚀电位
图11  不同掺入量聚合物改性混凝土的Cl-迁移系数
图12  聚合物改性混凝土的轴心抗压强度及抗折强度
[1] El-Hawary M M, Abdul-Jaleel A. Durability assessment of epoxy modified concrete[J]. Const. Build. Mater., 2010, 24(8): 1523
[2] Ohama Y. Polymer-based admixtures[J]. Cement Concrete Composites, 1998, 20(2): 189
[3] Ma H, Li Z. Microstructures and mechanical properties of polymer modified mortars under distinct mechanisms[J]. Constr. Build. Mater., 2013, 47: 579
[4] Miller M. Polymers in Cementitious Materials [M]. Aberdeen: iSmithersRapra Publishing, 2005
[5] Pascal S, Alliche A, Pilvin P. Mechanical behaviour of polymer modified mortars[J]. Mater. Sci. Eng., 2004, A380(1): 1
[6] Hu J, Koleva D A, Van Breugel K. Corrosion performance of reinforced mortar in the presence of polymeric nano-aggregates: electrochemical behavior, surface analysis, and properties of the steel/cement paste interface[J]. J. Mater. Sci., 2012, 47(12): 4981
[7] Song G. Equivalent circuit model for AC electrochemical impedance spectroscopy of concrete[J]. Cem. Concr. Res., 2000, 30(11): 1723
[8] Koleva D A, Van Breugel K, De Wit J H W, et al. Electrochemical behavior, microstructural analysis, and morphological observations in reinforced mortar subjected to chloride ingress[J]. J. Electrochem. Soc., 2007, 154(3): E45
[9] Ismail M, Ohtsu M. Corrosion rate of ordinary and high-performance concrete subjected to chloride attack by AC impedance spectroscopy[J]. Constr. Build. Mater., 2006, 20(7): 458
[10] Suryavanshi A K, Scantlebury J D, Lyon S B. Corrosion of reinforcement steel embedded in high water-cement ratio concrete contaminated with chloride[J]. Cement Concrete Composites, 1998, 20(4): 263
[11] Chung D D L. Use of polymers for cement-based structural materials[J]. J. Mater. Sci., 2004, 39(9): 2973
[12] GB/T50082-2009. Standard for test methods of long-term performance and durability of ordinary concreteGB/T50082-2009. Standard for test methods of long-term performance and durability of ordinary concrete[S] (GB/T50082-2009. 普通混凝土长期性能和耐久性能试验方法标准GB/T50082-2009. 普通混凝土长期性能和耐久性能试验方法标准[S])
[13] Cao C N,Zhang J Q. An Introduction to Electrochemical Impedance Spectroscopy[M]. Beijing: Science Press, 2002 (曹楚南,张鉴清. 电化学阻抗谱导论[M]. 北京: 科学出版社, 2002)
[14] Tian T. Study on properties of waterborne epoxy resin emulsion modified cement mortar [D]. Changsha: Hunan University, 2007 (田甜. 水性环氧树脂乳液改性水泥砂浆性能的研究 [D]. 长沙: 湖南大学, 2007)
[1] 曹京宜, 杨延格, 方志刚, 寿海明, 李亮, 冯亚菲, 王兴奇, 褚广哲, 赵伊. 淡水舱涂层在不同水环境中的失效行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[2] 曹京宜, 方志刚, 李亮, 冯亚菲, 王兴奇, 寿海明, 杨延格, 褚广哲, 殷文昌. 国产镀锌钢在不同水环境中的腐蚀行为:I淡水和盐水[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[3] 曹京宜, 方志刚, 冯亚菲, 李亮, 杨延格, 寿海明, 王兴奇, 臧勃林. 国产镀锌钢在不同水环境中的腐蚀行为:II反渗透水和调质水[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[4] 邓培昌, 钟杰, 王坤, 胡杰珍, 李子运, 岑楚欣, 沈小涵. 海洋工程装备高空腐蚀重要影响因素Cl-沉降速率研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 474-478.
[5] 闻洋, 熊林, 陈伟, 薛刚, 宋文学. 干湿循环下聚乙烯醇纤维混凝土抗Cl-渗透性能研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[6] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[7] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[8] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[9] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[10] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[11] 田雪凯, 王海龙, 程旭东, 孙晓燕. 混凝土裂缝形态参数对Cl-传输性能影响的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(4): 309-316.
[12] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[13] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[14] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[15] 周霄骋, 崔巧棋, 贾静焕, 刘智勇, 杜翠薇. Cl-浓度对316L不锈钢在碱性NaCl/Na2S溶液中SCC行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.