Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (4): 382-388    DOI: 10.11902/1005.4537.2013.132
  论文 本期目录 | 过刊浏览 |
环氧粉末涂层在1.5 mol/L NaCl溶液中的失效行为
杨海, 陆卫中, 李京, 孙超
中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110016
Degradation Behavior of Fusion Bonded Epoxy Powder Coating on Q235 Carbon Steel in 1.5 mol/L NaCl Solution
YANG Hai, LU Weizhong, LI Jing, SUN Chao
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(4225 KB)  
摘要: 通过电化学阻抗谱 (EIS) 对两种环氧粉末涂层在1.5 mol/L NaCl溶液中的失效行为进行了研究,利用扫描电子显微镜 (SEM) 和能谱仪 (EDS) 对涂层底部金属表面的腐蚀产物进行了分析,探讨了环氧粉末涂层在1.5 mol/L NaCl溶液中的失效机理。结果表明,在1.5 mol/L NaCl溶液中,Cl-等腐蚀介质能在涂层中形成传输通道渗透到涂层与金属界面,并参与界面的腐蚀反应,腐蚀产物主要为Fe的氧化物和氯化物。
关键词 环氧粉末涂层NaCl溶液失效    
Abstract:The degradation behavior of two kind of fusion bonded epoxy coatings on Q235 carbon steel in 1.5 mol/L NaCl solution was investigated by electrochemical impedance spectroscopy (EIS) and scanning electron microscope (SEM) with energy dispersive spectrometer (EDS). The results showed that corrosive species (Cl- etc) could penetrate through the coating and then arrive at the interface of coating/Q235 carbon steel ,which then induced corrosion reaction there, resulting corrosion products composed mainly of iron oxide and iron chloride. Finally a three step process was proposed to describe the electrochemical process of the coating degradation.
Key wordsepoxy powder coating    NaCl solution    degradation behavior
收稿日期: 2013-08-14     
ZTFLH:  TG174.5  
基金资助:中国科学院知识创新工程项目 (KGCX2-YW-219) 资助
通讯作者: 通讯作者:陆卫中,E-mail:wzlu@imr.ac.cn     E-mail: wzlu@imr.ac.cn
作者简介: 杨海,男,1986年生,硕士生,研究方向为有机涂层失效

引用本文:

杨海, 陆卫中, 李京, 孙超. 环氧粉末涂层在1.5 mol/L NaCl溶液中的失效行为[J]. 中国腐蚀与防护学报, 2014, 34(4): 382-388.
YANG Hai, LU Weizhong, LI Jing, SUN Chao. Degradation Behavior of Fusion Bonded Epoxy Powder Coating on Q235 Carbon Steel in 1.5 mol/L NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2014, 34(4): 382-388.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.132      或      https://www.jcscp.org/CN/Y2014/V34/I4/382

[1] Rouw A C. Model epoxy powder coatings and their adhesion to steel[J]. Prog. Org. Coat., 1998, 34: 181-192
[2] Legghe E, Aragon E, Belec L, et al. Correlation between water diffusion and adhesion loss: study of an epoxy primer on steel [J]. Prog. Org. Coat., 2009, 66: 276-280
[3] Nguyen T, Martin J W. Modes and mechanisms for the degradation of fusion-bonded epoxy-coated steel in a marine concrete environment [J]. J. Coat. Technol., 2004, 1(2): 81-92
[4] Wei Y H, Zhang L X, Ke W. Comparison of the degradation behavior of fusion-bonded epoxy powder coating systems under flowing and static immersion [J]. Corros. Sci., 2006, 48: 1449-1461
[5] Taylor S R, Contu F, Santhanam R, et al. The use of cationic fluoroprobes to characterize ionic pathways in organic coatings [J]. Prog.Org. Coat., 2012, 73: 169-172
[6] Eltai E O, Scantlebury J D, Koroleva E V. The effect of different ionic migration on the performance of intact unpigmented epoxy coated-mild steel under cathodic protection [J]. Prog. Org. Coat., 2012, 75: 79-85
[7] Zhu C F, Xie R, Xue J H, et al. Studies of the impedance of models and water transport behaviors of cathodiclly polarized coating [J]. Electrochim. Acta, 2011, 56: 5828-5835
[8] Zhang J T, Hu J M, Zhang J Q, et al. Studies of water transport behavior and impedance models of epoxy-coated metals in NaCl solution by EIS [J]. Prog. Org. Coat., 2004, 51: 145-151
[9] Zhang J T, Hu J M, Zhang J Q, et al. Studies of impedance models and water transport behaviors of polypropylene coated metals in NaCl solution [J]. Prog. Org. Coat., 2004, 49: 293-301
[10] Parks J, Leidheiser H. Ionic migration though organic coatings and its consequences to corrosion [J]. Ind. Eng. Chem. Prod. Res. Dev., 1985, 25: 1-6
[11] Chuang T J, Nguyen T, Li S. Micro-mechanic model for cathodic blister growth in painted steel [J]. J. Coat. Technol., 1999, 71: 75-85
[12] Nguyen T, Hubbard J B, Pommersheim J M. Unified model for the degradation of organic coatings on steel in a neutralelectrolyte [J]. J. Coat. Technol., 1996, 68: 45-56
[13] Martin J W, McKnight M E, Nguyen T, et al. Continuous wet vs cyclic wet-dry salt immersion results for scribed coated steel panels [J]. J. Coat. Technol., 1989, 61: 39-49
[1] 曹京宜, 王智峤, 李亮, 孟凡帝, 刘莉, 王福会. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
[2] 赵书彦,童鑫红,刘福春,翁金钰,韩恩厚,郦晓慧,杨林. 环氧富锌涂层防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[3] 王贵容,郑宏鹏,蔡华洋,邵亚薇,王艳秋,孟国哲,刘斌. 环氧防腐涂料在模拟海水干湿交替条件下的失效过程[J]. 中国腐蚀与防护学报, 2019, 39(6): 571-580.
[4] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[5] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响I:界面结合性能分析[J]. 中国腐蚀与防护学报, 2018, 38(2): 124-132.
[6] 王海媛, 卫英慧, 杜华云, 刘宝胜, 郭春丽, 侯利锋. 绿色缓蚀剂SDDTC对AZ31B镁合金的缓蚀作用及吸附行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 62-67.
[7] 陈振宁,陈日辉,潘金杰,滕艳娜,雍兴跃. L921A钢在3.5%NaCl溶液中的有机/无机复配缓蚀剂研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[8] 赵洪涛, 陆卫中, 李京, 郑玉贵. 无溶剂环氧防腐涂层在不同流速模拟海水冲刷条件下的失效行为[J]. 中国腐蚀与防护学报, 2017, 37(4): 329-340.
[9] 高洪扬,王巍,许立坤,马力,叶章基,李相波. 改性环氧防腐涂层在模拟深海高压环境的失效行为[J]. 中国腐蚀与防护学报, 2017, 37(3): 247-263.
[10] 王喜忠,吴建颢,彭徽,郭洪波,宫声凯. 电子束物理气相沉积La2Ce2O7热障涂层的高温燃气热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 36-40.
[11] 朱敏,袁永锋,刘俊,聂轮,周健. Incoloy825合金在不同温度3.5%NaCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(6): 631-636.
[12] 金小寒,胡吉明,张鉴清. 含有机物水溶液电解体系中的阳极材料及其失效特性[J]. 中国腐蚀与防护学报, 2015, 35(3): 199-204.
[13] 陈琛, 郭洪波, 宫声凯. 横向梯度温度场下热障涂层的失效分析[J]. 中国腐蚀与防护学报, 2013, 33(5): 400-406.
[14] 胡春莲,侯尚林. 喷焊镍基合金液力反馈抽油泵柱塞失效分析[J]. 中国腐蚀与防护学报, 2012, 32(1): 80-84.
[15] 苏义祥,鲍艳东,廖乃飞,侯凤刚,代英秋. Te-Ni-Cr合金在3.5%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2011, 31(6): 462-466.