Please wait a minute...
中国腐蚀与防护学报  2012, Vol. 32 Issue (1): 70-74    
  研究报告 本期目录 | 过刊浏览 |
紫铜T2和黄铜H62在热带海洋大气环境中早期腐蚀行为
吴军1,2,李晓刚2,董超芳2,张三平1,周建龙2
1. 武汉材料保护研究所 武汉 430030
2. 北京科技大学腐蚀与防护中心 北京 100083
INITIAL CORROSION BEHAVIOR OF COPPER AND BRASS IN TROPICAL MARITIME ATMOSPHERIC ENVIRONMENT
WU Jun1,2, LI Xiaogang2, DONG Chaofang2, ZHANG Sanping1, ZHOU Jianlong2
1. Wuhan Research Institute of Materials Protection,Wuhan 430030
2. Corrosion and Protection Center,University of Science and Technology Beijing, Beijing 100083
全文: PDF(2983 KB)  
摘要: 通过现场暴露实验,研究了紫铜T2和黄铜H62在西沙群岛典型热带海洋大气环境中暴露1、3、6个月后的腐蚀行为。采用扫描电镜观察腐蚀产物的表面和断面微观形貌,并用能量色散谱(EDS)和X射线衍射仪(XRD)分析了腐蚀产物元素和组成。测试紫铜T2和黄铜H62电化学阻抗谱(EIS)。结果表明,紫铜T2和黄铜H62在西沙海洋大气环境中暴露早期均发生了明显的局部腐蚀,O和Cl-是促进早期腐蚀的主要原因,高的相对湿度、温度、Cl-含量和长日照以及砂石粉尘对铜及铜合金的腐蚀起到加速作用。紫铜T2的主要腐蚀产物为Cu2O,黄铜H62的主要腐蚀产物为Cu3Cl4(OH)2和Zn5(OH)8Cl2•H2O。
关键词 紫铜T2黄铜H62西沙大气腐蚀电化学阻抗谱    
Abstract:The corrosion behavior and regularity of copper T2 and brass H62 exposed in tropical maritime atmospheric environment in Xisha Islands for 1 month, 3 mouths and 6 months were studied through field exposure test. The surface and cross-sections morphologies of corrosion products were observed using SEM, energy dispersive spectromet (EDS) and X-ray diffraction (XRD) analysis were used to obtain the detailed information of the corrosion products. Electrochemical impedance spectroscopy (EIS)measurements were made for copper T2 and brass H62 specimens. The results showed that obvious localized corrosion occurred for copper T2 and brass H62 specimens in maritime atmospheric environment in Xisha Islands. The existence of O and Cl- is the main reason for the initial corrosion. The relatively high relativity humidity, temperature, Cl- amount, long sunshine, and the existence of dust accelerated the corrosionm of copper T2 and brass H62 specimens. The main corrosion product for copper T2 is Cu2O and for brass H62 are Cu3Cl4(OH)2 and Zn5(OH)8Cl2•H2O.
Key wordscopper    brass    Xisha islands    atmospheric corrosion    EIS
收稿日期: 2010-09-28     
ZTFLH: 

TG172.3

 
基金资助:

科技部国家科学基础条件平台建设项目(2005DKA-10400)和国家自然科学基金项目(50771020)资助

通讯作者: 吴军     E-mail: guanquan0000@sina.com
作者简介: 吴军,男,1979年生,硕士,研究方向为材料的大气腐蚀与防护

引用本文:

吴军,李晓刚,董超芳,张三平,周建龙. 紫铜T2和黄铜H62在热带海洋大气环境中早期腐蚀行为[J]. 中国腐蚀与防护学报, 2012, 32(1): 70-74.
WU Jun. INITIAL CORROSION BEHAVIOR OF COPPER AND BRASS IN TROPICAL MARITIME ATMOSPHERIC ENVIRONMENT. J Chin Soc Corr Pro, 2012, 32(1): 70-74.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2012/V32/I1/70

[1] Wu G H, Liao G D, Su S Y. Typical marine environmental test base in China-Xisha test station[J]. Electron. Prod. Reliab.Environ. Test., 2005, B12(Suppl.): 25-27

    (吴国华, 廖国栋,苏少燕. 我国典型的海洋环境试验基地-西沙试验站[J].电子产品可靠性与环境试验, 2005, B12(增刊): 25-27)

[2] Yang M, Wang Z Y. Review of atmospheric corrosion of copper[J]. Equip. Environ. Eng., 2006, 3(4): 38-44

    (杨敏,王振尧. 铜的大气腐蚀研究[J]. 装备环境工程. 2006, 3(4): 38-44)

[3] Rosa V, Diana D, Blanca M R. Effect of atmospheric pollutants on the corrosion of high power electrical conductors-Part2.Pure copper[J]. Corros. Sci., 2007, 49(6): 2329-2350

[4] Sandberg J, Wallinder I O, Leygraf C. Corrosion-induced copper runoff from naturally and pre-patinated copper in a marine environment[J]. Corros. Sci., 2006, 48(12): 4316-4338

[5] Corvo F, Minotas J, Delgado J. Changes in atmospheric corrosion rate caused by chloride-ions depending on rain regime[J].Corros. Sci., 2005, 47(4): 883-892

[6] An B G, Zhang X Y, Han E H. Corrosion behavior of pure copper during initial exposure stage in atmosphere of Shenyang city[J]. Acta Metall. Sin., 2007, 43(1): 77-51

    (安百刚,张学元, 韩恩厚. 沈阳大气环境下纯铜的初期腐蚀行为[J]. 金属学报, 2007,43(1): 77-51)

[7] Liu Q, Wang Q J, Du Z Z. Corrosion research of copper in natural environmental[J]. New Technol. New Process, 2008, (8): 80-82

    (刘琼, 王庆娟, 杜忠泽. 铜在自然环境中的腐蚀研究[J].新技术新工艺, 2008, (8): 80-82)

[8] Jouen S, Jean M, Hannoyer B. Simultaneous copper run of and copper surface analysis in an outdoor area[J].Surf. Interface Anal., 2000, 30(10): 145-148

[9] Graedel T E, Nassauk K, Franey J P. Copper patinas formed in the atmosphere[J]. Corros. Sci., 1987, 27(7): 639-657

[10] Mendoza A R, Corvo F, Gomez A, et al. Influence of the corrosion products of copper on its atmospheric corrosion kinetics in tropical climate[J]. Corros. Sci., 2004, 46(5): 1189-1200

[11] Cao C N. Environmental Corrosion of Materials in China[M]. Beijing: Chemical Industry Press, 2005: 113

     (曹楚南. 中国材料的自然环境腐蚀[M]. 北京: 化学工业出版社, 2005: 113)

[12] Cao C N, Zhang J Q. Introduction to Electrochemical Impedance Spectroscopy[M]. Beijing: Science Press, 2002

     (曹楚南, 张鉴清. 电化学阻抗谱导论[M]. 北京: 科学出版社, 2002)
[1] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[2] 范益,陈林恒,蔡佳兴,代芹芹,马宏驰,程学群. 热轧AH36船板钢在室内仓储条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[3] 潘成成,马超,夏大海. EBSD技术研究金属材料晶体取向对大气腐蚀萌生的影响机理[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[4] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[5] 邓俊豪,胡杰珍,邓培昌,王贵,吴敬权,王坤. 氧化皮对SPHC热轧钢板在热带海洋大气环境中初期腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[6] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[7] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[8] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[9] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[10] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[11] 王力, 郭春云, 肖葵, 吐尔逊·斯拉依丁, 董超芳, 李晓刚. Q235和Q450钢在吐鲁番干热大气环境中长周期暴晒时的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[12] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[13] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[14] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[15] 梅朦, 郑红艾, 陈惠达, 张鸣, 张大全. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.