Please wait a minute...
中国腐蚀与防护学报  2011, Vol. 31 Issue (5): 329-335    
  研究报告 本期目录 | 过刊浏览 |
电化学阻抗谱对比研究连续浸泡和干湿循环条件下有机涂层的劣化过程
张伟1,2,王佳2,3,赵增元4,刘学庆5
1. 钢铁研究总院青岛海洋腐蚀研究所 青岛 266071
2. 中国海洋大学化学化工学院 青岛 266003
3. 金属腐蚀与防护国家重点实验室 沈阳 110015
4. 海洋石油工程(青岛)有限公司 青岛 266555
5. 青岛国家海洋科学研究中心 青岛 266071
EIS STUDY ON THE DETERIORATION PROCESS OF ORGANIC COATINGS UNDER IMMERSION AND CYCLIC WET-DRY CONDITIONS
ZHANG Wei1,2, WANG Jia2,3, ZHAO Zengyuan4, LIU Xueqing5
1. Qingdao Marine Corrosion Institute, Central Research Institute for Steel and Iron, Qingdao 266071
2. College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003
3. State Key Laboratory for Corrosion and Protection, Shenyang 110015
4. Offshore Oil Engineering Qingdao Co., Ltd, Qingdao 266555
5. National Oceanographic Center, Qingdao 266071
全文: PDF(1496 KB)  
摘要: 用电化学阻抗谱(EIS)技术对比研究浸泡在3.5% NaCl溶液中的碳钢表面有机涂层在连续浸泡和干湿循环条件下的劣化过程。结果表明,连续浸泡和干湿循环条件下的涂层劣化过程均可分为三个主要阶段:涂层渗水阶段、基底金属腐蚀发生阶段和基底金属腐蚀发展与涂层失效阶段。和连续浸泡过程相比,干湿循环加速了整个涂层的劣化过程,使涂层进入快速失效阶段。但是干湿循环对涂层失效的三个子过程的加速效果又不完全相同。相对于涂层渗水阶段的加速效果,干湿循环对界面腐蚀发生阶段和腐蚀发展与涂层失效阶段的加速效果更为明显。
关键词 有机涂层干湿循环EIS    
Abstract:Comparing between immersed and cyclic wet-dry conditions, the deterioration processes of the organic coatings on carbon steel surface have been comparatively studied by using electrochemical impedance spectroscopy (EIS). The wet-dry cycles were carried out in the alternating conditions by immersing in a 3.5% sodium chloride solution and drying at 25° and 50% RH for 4 h respectively. Coating resistance, Rf, coating capacitance, Cf, and double layer capacitance, Cd, were monitored continuously and separately under above two conditions. The percentages of the interface active area, Aw, were estimated from the obtained double layer capacitance, Cd. According to the EIS characteristics, the entire deterioration processes under two above-mentioned conditions can be divided into three main stages, consisting of the medium penetration into coatings, corrosion initiation and corrosion extension underlying coatings. In comparison with the immersed, the wet-dry cycles greatly accelerated the entire deterioration process; especially the corrosion initiation and the corrosion extension periods, leading the paint system lose its anti-corrosive performance in a short period. However, the underlying substrate corrosion of the cyclic coatings was far less serious than the immersed; even the delaminating area was seven times more than the immersed. The acceleration mechanism of the coatings and underlying metal corrosion under wet-dry cycles was discussed based on the above results.
Key wordsorganic coatings    wet-dry cycles    electrochemical impedance spectroscopy
收稿日期: 2010-04-13     
ZTFLH: 

TG174.46

 
基金资助:

国家自然科学基金项目(50791118)资助

通讯作者: 王佳     E-mail: jwang@mail.ouc.edu.cn
Corresponding author: WANG Jia     E-mail: jwang@mail.ouc.edu.cn
作者简介: 张伟,男,1980年生,博士,研究方向为腐蚀电化学

引用本文:

张伟,王佳,赵增元,刘学庆. 电化学阻抗谱对比研究连续浸泡和干湿循环条件下有机涂层的劣化过程[J]. 中国腐蚀与防护学报, 2011, 31(5): 329-335.
ZHANG Wei, YU Jia, DIAO Ceng-Yuan. EIS STUDY ON THE DETERIORATION PROCESS OF ORGANIC COATINGS UNDER IMMERSION AND CYCLIC WET-DRY CONDITIONS. J Chin Soc Corr Pro, 2011, 31(5): 329-335.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2011/V31/I5/329

[1] Deflorian F, Fedrizzi L, Bonora P L. Influence of the photo-oxidative degradation on the water barrier and corrosion protection properties of polyester paints [J]. Corros. Sci., 1996, 38: 1697-1708

[2] Destreri M D G, Vogelsang J, Fedrizzi L, et al. Water up-take evaluation of new waterborne and high solid epoxy coatings [J]. Prog. Org. Coat., 1999,37: 69-81

[3] Yang X F, Tallman D E, Croll S G, et al. Morphological changes in polyurethane coatings on exposure to water [J]. Polym. Degrad. Stab., 2002,77: 391-396

[4] Park J H, Lee G D, Ooshige H, et al. Monitoring of water uptake in organic coatings under cyclic wet--dry condition [J]. Corros. Sci., 2003,45: 1881-1894

[5] Stratmann M, Streckel H, Kim K T, et al. On the atmospheric corrosion of metals which are covered with thin electrolyte layers-Ⅲ.the measurement of polarization curves on metal surfaces which are covered by thin electrolyte layers [J]. Corros. Sci., 1990, 30: 715-734

[6] Leng A, Streckel H, Stratmann M. The delamination of polymeric coatings from steel. Part 3 Effect of the oxygen partial pressure on the delamination reaction and current distribution at the metal/polymer interface [J]. Corros. Sci.,1999, 41: 599-620

[7] Furbeth W, Stratmann M. The delamination of polymeric coatings from electrogalvanised steel--a mechanistic approach.: Part 1: delamination from a defect with intact zinc layer [J]. Corros.Sci., 2001, 43: 207-227

[8] Tomashov N D. Development of the electrochemical theory of metallic corrosion [J]. Corrosion,1964, 20: 7t-14t

[9] Tsuru T, Nishikata A, Wang J. Electrochemical studies on corrosion under a water film [J]. Mater.Sci. Eng., 1995, A198: 161-168

[10] Mansfeld F. Corrosion Processes [M]. London:Applied Science Publishers, 1982

[11] Wang J, Tsuru T. An investigation on oxygen reduction under thin electrolyte layer using Kelvin probe reference electrode [J]. J. Chin. Soc.Corros. Prot., 1995, 15(3): 180-188

     (王佳,水流彻. 使用Kelvin探头参比电极技术研究液层厚度对氧还原速度的影响 [J]. 中国腐蚀与防护学报, 1995, 15(3): 180-188)

[12] Yadav A P, Nishikata A, Tsuru T. Electrochemical impedance study on galvanized steel corrosion under cyclic wet--dry conditions influence of time of wetness [J]. Corros. Sci., 2004, 46: 169-181

[13] Veracruz R P, Nishikata A, Tsuru T. Pitting corrosion mechanism of stainless steels under wet-dry exposure in chloride-containing environment [J]. Corros. Sci., 1998, 40(1): 125-139

[14] Zhang J Q, Cao C N Study and evaluation on coatings by electrochemical impedance spectroscopy [J]. Corros. Prot., 1998, 19(3): 99-104

     (张鉴清, 曹楚南. 电化学阻抗谱方法研究评价有机涂层 [J]. 腐蚀与防护, 1998, 19(3): 99-104)

[15] Gao Z M, Song S Z, Xu Y H. Electrochemical impedance spectroscope analysis of coating deterioration process with Kohonen neural networks [J]. J. Chin.Soc. Corros. Prot., 2005, 25(2): 106-109

     (高志明, 宋诗哲, 徐云海. 涂层失效过程电化学阻抗谱的神经网络分析 [J]. 中国腐蚀与防护学报, 2005, 25(2): 106-109)

[16] Zhao X, Wang J, Wang Y H, et al. Analysis of deterioration process of organic protective coating using EIS assisted by SOM network [J].Electrochem. Commun., 2007, 9: 1394-1399

[17] Zhang W, Wang J, Zhao Z Y, et al. Study on deterioration process of organic coatings by EIS and SKP [J]. Chem. J. Chin. Univ., 2009,30: 762-766

     (张伟,王佳,赵增元等. 有机涂层失效过程的电化学阻抗和电位分布响应特征 [J]. 高等学校化学学报, 2009, 30: 762-766)

[18] Howard R L, Lyon S B, Scantlebury J D. Accelerated tests for prediction of cut edge corrosion of coil-coated architectural cladding.Part II: Cyclic immersion [J]. Prog. Org.Coat., 1999, 37: 99-106

[19] Gamal A, El-Mahdy, Nishikata A, et al. Electrochemical corrosion monitoring of galvanized steel under cyclic wet--dry conditions [J]. Corros.Sci., 2000, 42: 183-194

[20] Gamal A, El-Mahdy. Atmospheric corrosion of copper under wet/dry cyclic conditions [J].Corros. Sci., 2005, 47: 1370-1383

[21] Lendvay-Gyorik G, Pajkossy T, Lengyel B. Corrosion-protection properties of water-borne paint coatings as studied by electrochemical impedance spectroscopy and gravimetry [J].Prog. Org. Coat., 2006, 56: 304-310

[22] Deflorian F, Fedrizzi L, Rossi S, et al.Organic coating capacitance measurement by EIS:ideal and actual trends [J]. Electrochim.Acta, 1999, 44: 4243-4294

[23] Morcillo M. Soluble salts: their effect on premature degradation of anticorrosive paints [J].Prog. Org. Coat., 1999, 36: 137-147

[24] Amirudin A, Thierry D. Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals [J]. Prog. Org. Coat., 1995, 26: 1-28

[25] Battocchi D, Tallman D E, Bierwagen G P. Electrochemical behavior of a Mg-rich primer in the protection of Al alloys [J]. Corros Sci.,2006, 48: 1292-1306

[26] Poelman M, Olivier M G, Gayarre N, et al. Electrochemical study of different ageing tests for the evaluation of a cataphoretic epoxy primer on aluminium [J]. Prog. Org.Coat., 2005, 54: 55-62

[27] Deflorian F, Rossia S, Fedrizzi L, et al. EIS study of organic coating on zinc surface pretreated with environmentally friendly products [J]. Prog. Org. Coat., 2005, 52: 271-279
[1] 闻洋, 熊林, 陈伟, 薛刚, 宋文学. 干湿循环下聚乙烯醇纤维混凝土抗Cl-渗透性能研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[2] 曹京宜, 王智峤, 李亮, 孟凡帝, 刘莉, 王福会. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
[3] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[4] 桂琪, 郑大江, 宋光铃. 醇酸清漆保护性的电化学加速评价[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[5] 蔡光义,王浩伟,赵苇杭,董泽华. 添加纳米CeO2对聚氨酯涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(5): 411-420.
[6] 郝永胜,Luqman Abdullahi SANI,宋立新,徐国宝,葛铁军,方庆红. 中性和酸性溶液中Q235碳钢表面沉积植酸转化膜的耐蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 549-558.
[7] 刘艳洁,王振尧,柯伟. 纯Al在3种典型沿海,工业和乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(1): 47-51.
[8] 杨霜,唐囡,闫茂成,赵康文,孙成,许进,于长坤. 温度对X80管线钢酸性红壤腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2015, 35(3): 227-232.
[9] 郑敏聪, 李建华, 聂新辉, 李博文, 台闯. 镀锌钢接地材料在酸性土壤中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2015, 35(1): 27-32.
[10] 元辛, 岳珠峰, 温世峰, 李磊. 铝合金表面有机硅环氧涂层的腐蚀电化学行为[J]. 中国腐蚀与防护学报, 2014, 34(4): 375-381.
[11] 朱敏, 杜翠薇, 李晓刚, 刘智勇, 李月强, 黄亮. Cu在北京土壤环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2013, 33(4): 306-310.
[12] 苏景新 白 云 关庆丰 邹 阳. 飞机蒙皮结构表面涂层失效的电化学阻抗分析[J]. 中国腐蚀与防护学报, 2013, 33(3): 251-256.
[13] 朱 敏 杜翠薇 李晓刚 刘智勇 姚文涛 黄 亮. Q235钢在北京土壤环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2013, 33(3): 199-204.
[14] 李喜明 金 哲 刘五铸 孙 成 张洪伟 许 进 闫茂成 于长坤 王振尧. 尿素对土壤中Q235钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2013, 33(3): 216-220.
[15] 金伟良,岳增国,许晨,李志远. 混凝土中钢筋脱钝氯离子阈值的快速测定[J]. 中国腐蚀与防护学报, 2012, 32(3): 223-227.