Please wait a minute...
中国腐蚀与防护学报  2010, Vol. 30 Issue (5): 359-363    
  研究报告 本期目录 | 过刊浏览 |
25钢在热带海洋环境下海水中的微生物腐蚀及其对力学性能的影响
肖伟龙1,柴柯1,杨雨辉2,吴进怡1
1. 海南大学材料与化工学院 海南优势资源化工材料应用技术教育部重点实验室 海口 570228
2. 海南大学农学院 海口 570228
EFFECT OF MICROBE ON THE CORROSION BEHAVIORS AND MECHANICAL PROPERTIES OF 25 CARBON STEEL IN TROPICAL SEAWATER CONDITION
XIAO Weilong1, CHAI Ke1, YANG Yuhui2, WU Jinyi1
1. Ministry of Education Key Laboratory of Application Technology of Hainan Superior Resources Chemical Materials, Material and Chemical Engineering College, Hainan University, Haikou 570228
2. Agricultural College, Hainan University, Haikou 570228
全文: PDF(491 KB)  
摘要: 通过对比25钢在热带海洋环境下自然海水和无菌海水中的平均腐蚀深度,研究微生物对碳钢腐蚀行为的影响。结果表明,海水中微生物的存在显著影响碳钢的平均腐蚀深度。浸泡时间为365 d时,在自然海水中的腐蚀深度为无菌海水中的2.6倍,产生了明显的局部腐蚀。无菌海水和自然海水腐蚀都会造成材料抗拉强度的下降,对比发现腐蚀时间较长时自然海水中材料抗拉强度下降更大,说明微生物腐蚀对材料抗拉强度有一定影响。微生物腐蚀对材料抗拉强度的影响作用,主要在于微生物的存在使材料的平均腐蚀深度增大,引起材料横截面积的减小。微生物腐蚀并不会降低退火25钢的延伸率和夏比冲击功,实验过程中未发现微生物作用下材料的氢脆现象。
关键词 海水25钢微生物腐蚀力学性能    
Abstract:In this work, the single effect of microbe on the corrosion behaviors of 25 carbon steel is studied by comparing the average corrosion depth of the carbon steel in natural seawater and in sterile seawater in tropic condition. Through examining the strength and Charpy impact absorbed energy after different corrosion periods, the effects of microbiologically influenced corrosion (MIC) process on mechanical properties of 25 steel are illustrated. The results show that the bacterial activity at the interface accelerates the corrosion of 25 steel. When the corrosion time is 365 d, the average corrosion depth of 25 steel in natural seawater is 2.6 times higher than that in sterile seawater. Localized attack is also observed on the specimens immersed in natural seawater for 365 d. The corrosion of 25 steel in natural seawater and sterile seawater reduces the ultimate tensile strength of 25 steel, and this effect is more notable during the corrosion in natural seawater than in the sterile seawater. The analysis reveals that the decrease of the ultimate tensile strength is related to the increase of average corrosion depth. MIC does not decrease the elongation and Charpy impact absorbed energy of the annealed 25 steel, and MIC induced hydrogen embrittlement is not found.
Key wordsseawater    25 steel    microbiologically influenced corrosion    mechanical properties
收稿日期: 2009-09-10     
ZTFLH: 

TG172.5

 
基金资助:

国家自然科学基金项目(50761004)、海南省自然科学基金项目(807011和80630)、海南大学2005和2009科研项目(Kyjj0536和hd09xm77)资助

通讯作者: 吴进怡     E-mail: wujinyi1976@yahoo.com.cn
Corresponding author: WU Jinyi     E-mail: wujinyi1976@yahoo.com.cn
作者简介: 吴进怡,女,1976年生,副教授,研究方向为金属腐蚀与防护

引用本文:

肖伟龙,柴柯,杨雨辉,吴进怡. 25钢在热带海洋环境下海水中的微生物腐蚀及其对力学性能的影响[J]. 中国腐蚀与防护学报, 2010, 30(5): 359-363.
WU Jin-Yi, XIAO Wei-Long, YANG Yu-Hui, CI Ke. EFFECT OF MICROBE ON THE CORROSION BEHAVIORS AND MECHANICAL PROPERTIES OF 25 CARBON STEEL IN TROPICAL SEAWATER CONDITION. J Chin Soc Corr Pro, 2010, 30(5): 359-363.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2010/V30/I5/359

[1] Little B, Wagner P. Myths related to microbiologically influenced corrosion [J]. Mater. Perform., 1997, 36(6): 40-44 [2] Little B, Wagner P. Factors influencing the adhesion of microorganisms to surfaces [J]. J. Adhesion, 1986, 20(3): 187-210 [3] Wu J Y, Xiao W L, Chai K, et al. The single effect of microbe on the corrosion behaviors of 45 steel in seawater in tropic condition [J]. Acta Metall. Sin., 2010, 46(1): 118-122     (吴进怡, 肖伟龙, 柴柯等. 热带海洋环境下海水中微生物对45钢腐蚀行为的单因素影响 [J]. 金属学报, 2010, 46(1): 118-122) [4] Mansfeld F, Little B. A technical review of electrochemical techniques applied to microbiologically influenced corrosion [J].Corros. Sci., 1991, 32(3): 247-261 [5] de Damborenea J J, Cristobal A B, Arenas M A, et al.Selective dissolution of austenite in AISI 304 stainless steel by bacterial activity [J]. Mater. Lett., 2007, 61(3): 821-823 [6] Cristobal A B, Arenas M A, Conde A, et al. Corrosion of stainless steels covered by exopolymers [J]. Electrochim. Acta,2006, 52(2): 546-551 [7] Li X B, Wang W, Wang J, et al. Effect of biofilms on metal corrosion in sea water [J]. Corros. Sci. Prot. Technol., 2002,14(4): 218-222      (李相波, 王伟, 王佳等. 海水中微生物膜的生长对金属腐蚀过程的影响 [J]. 腐蚀科学与防护技术, 2002, 14(4): 218-222) [8] Jung H G, Yoo J Y, Woo J S. The microbiologically influenced corrosion behavior of C-Mn ship structural steel with different manufacturing processes [J]. ISIJ Int., 2003,43(10): 1603-1610 [9] Mathiyarasu J, Palaniswamy N, Muralidharan V S. Corrosion resistance of cupronickels-An overview [J]. Corros. Rev., 2000,18(1): 65-103 [10] Walsh D, Pope D, Danford M, et al. The effect of microstructure on microbiologically influenced corrosion [J]. JOM,1993, 45(9): 22-30 [11] Chen D B, Hu Y L, Chen X Q. Progress of microbial influenced corrosion in warship [J]. J. Nav. Univ. Eng., 2006, 18(1): 79-84      (陈德斌, 胡裕龙, 陈学群, 舰船微生物腐蚀研究进展 [J]. 海军工程大学学报, 2006, 18(1): 79-84) [12] Liu D Y, Wei K J, Li W J, et al. Influence of environmental factors in Yulin area of the south China sea on localized corrosion of steels [J]. J. Chin. Soc. Corros. Prot., 2003, 23(4): 211-216      (刘大扬, 魏开金, 李文军等. 南海榆林海域环境因素对钢局部腐蚀的影响 [J]. 中国腐蚀与防护学报, 2003, 23(4): 211-216) [13] Sreekumari K R, Nandakumar K, Takao K, et al. Silver containing stainless steel as a new outlook to abate bacterial adhesion and microbiologically influenced corrosion [J]. ISIJ Int,2003; 43(11): 1799-1806 [14] Wu J Y, Chai K, Xiao W L, et al. The single effect of microbe on the corrosion behaviors of 25 steel in seawater [J].Acta Metall. Sin., 2010, 46(6): 755-760      (吴进怡, 柴柯, 肖伟龙等. 25钢在海水中的微生物单因素腐蚀 [J]. 金属学报, 2010, 46(6): 755-760) [15] Biezma M V. The role of hydrogen in microbiologically influenced corrosion and stress corrosion cracking [J]. Int. J.Hydrogen Energ., 2001, 26(5): 515-520
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[3] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] 翟思昕, 杨幸运, 杨继兰, 顾剑锋. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[5] 王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[6] 胥聪敏,罗立辉,王文渊,赵苗苗,田永强,宋鹏迪. D-tyrosine对碳钢表面铁细菌生物膜的杀菌增强作用机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 63-69.
[7] 卫晓阳,杨丽景,吕战鹏,郑必长,宋振纶. 磁场对纯Cu微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 484-494.
[8] 丁国清,李向阳,张波,杨朝晖,黄桂桥,杨海洋,刘凯吉. 金属材料在天然海水中的腐蚀电位及其变化规律[J]. 中国腐蚀与防护学报, 2019, 39(6): 543-549.
[9] 吴堂清,周昭芬,王鑫铭,张德闯,尹付成,孙成. 微生物致裂的热力学和动力学分析[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.
[10] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[11] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[12] 杨丹,李定林,黄彦良,华丕龙,赵霞,彭鹏,王秀通. 海水抽水蓄能电站的金属腐蚀和选材问题研究现状[J]. 中国腐蚀与防护学报, 2019, 39(1): 1-8.
[13] 史显波,杨春光,严伟,徐大可,闫茂成,单以银,杨柯. 管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[14] 李鑫,陈旭,宋武琦,杨佳星,吴明. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[15] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.