Please wait a minute...
中国腐蚀与防护学报  2011, Vol. 31 Issue (3): 231-235    
  研究报告 本期目录 | 过刊浏览 |
硫酸盐还原菌生物膜下铜镍锡合金的腐蚀行为
陈娟1,类延华1,高冠慧1,孔茉莉1,尹衍升2
1. 中国海洋大学材料科学与工程研究院 青岛 266100
2. 上海海事大学海洋材料科学与工程研究院 上海 201306
CORROSION BEHAVIOR OF Cu-Ni-Sn ALLOY UNDER SULFATE-REDUCING BACTERIABIOFILM
CHEN Juan1, LEI Yanhua1, GAO Guanhui1, KONG Moli1, YIN Yansheng2
1. Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100
2. Institute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai 201306
全文: PDF(1845 KB)  
摘要: 用开路电位法、极化曲线法和电化学阻抗技术研究硫酸盐还原菌(SRB)对铜镍锡合金腐蚀行为的影响。用扫描电镜(SEM)和能谱分析(EDS)观察铜镍锡合金的腐蚀形貌。结果表明,SRB的存在使电极开路电位从-275 mV 负移至-750 mV,较无菌环境中开路电位(-100 mV)下降了650 mV,合金腐蚀加速。扫描电镜观察结果表明,合金表面生成不均匀的生物膜,主要发生点蚀和缝隙腐蚀。能谱分析显示腐蚀产物主要是铜和镍的硫化物,生物膜下铜镍锡合金发生脱镍和脱锡腐蚀。
关键词 铜镍锡合金SRB生物膜微生物腐蚀脱镍腐蚀    
Abstract:The effect of sulfate - reducing bacteria (SRB) on corrosion behavior of Cu-Ni-Sn alloy were studied using open circuit potential, polarization curve and electrochemical impedance spectroscopy (EIS) methods. Scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) were utilized to investigate the corrosion morphologies of Cu-Ni-Sn alloy. The open circuit potential of the alloy in condition with SRB decreased from -275 mV to -750 mV and nearly 650 mV lower than that of which without SRB (-100 mV). SEM results showed that an uneven biofilm occurred on the alloy surface and there were pitting corrosion and crevice corrosion. EDS analysis indicates that denickelification and detinning corrosion occurred and the corrosion products were copper and nickel sulfide. Therefore, the corrosion of Cu-Ni-Sn alloy accelerated under the biofilm of SRB.
Key wordsCu-Ni-Sn alloy    sulfate-reducing bacteria biofilm    microbiological influenced corrosion    denickelification
收稿日期: 2010-03-29     
ZTFLH: 

TG172

 
通讯作者: 尹衍升      E-mail: yys2003@ouc.edu.cn
Corresponding author: YIN Yansheng     E-mail: yys2003@ouc.edu.cn
作者简介: 陈娟,女,1986年生,硕士生,研究方向为涉海材料

引用本文:

陈娟,类延华,高冠慧,孔茉莉,尹衍升. 硫酸盐还原菌生物膜下铜镍锡合金的腐蚀行为[J]. 中国腐蚀与防护学报, 2011, 31(3): 231-235.
CHEN Juan. CORROSION BEHAVIOR OF Cu-Ni-Sn ALLOY UNDER SULFATE-REDUCING BACTERIABIOFILM. J Chin Soc Corr Pro, 2011, 31(3): 231-235.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2011/V31/I3/231

[1] Liu H F, Huang L, Liu T, et al. Application and progress in bactericide of sulfate reducing bacteria [J]. J. Chin. Soc. Corros. Prot., 2009, 29(2): 154-160

    (刘宏芳, 黄玲, 刘涛等. 硫酸盐还原菌杀菌剂应用现状及研究进展 [J]. 中国腐蚀与防护学报, 2009, 29(2): 154-160)

[2] Huang G S, Liu G Z, Duan D X, et al. Sulfate-reducing bacteria on corrosion of copper-nickel alloys [J].Corros. Prot., 2004, 25(6): 242-244

    (黄国胜, 刘光洲, 段东霞等. 硫酸盐还原菌对铜镍合金腐蚀的影响 [J]. 腐蚀与防护, 2004, 25(6): 242-244)

[3] He B, Sun C, Han E H, et al. Effects of SRB on corrosion of carbon steel in soils with different humidities [J].Corros. Sci. Prot. Technol., 2003, 15(1): 1-4

    (何斌, 孙成, 韩恩厚等. 不同湿度土壤中硫酸盐还原菌对碳钢腐蚀的影响 [J]. 腐蚀科学与防护技术, 2003, 15(1): 1-4)

[4] Gentil V. Corrosion( 3rd edition) [M] . Brazil:LTC- Livros Tecnicose Cientificos Ed. SA., 1996

[5] Huang G T, Chan K Y, Herbert H P.Microbiologically induced corrosion of 70Cu-30Ni alloy in anaerobic seawater [J]. J. Electrochem. Soc.,2004, 151(7): B434-B439

[6] Yuan S J, Pehkonen S O, Ting Y P, et al. Corrosion behavior of type 304 stainless steel in a simulated seawater-based medium in the presence and absence of aerobic pseudomonas NCIMB 2021 bacteria [J].Chem. Res., 2008, 47(9): 3008-3020

[7] Li Y X, Gong A J. Sulfate-reducing bacteria microbial corrosion research [J]. Total Corros. Control, 2005, 19(1): 30-33

    (李迎霞, 弓爱君. 硫酸盐还原菌微生物腐蚀研究进展 [J]. 全面腐蚀控制, 2005, 19(1): 30-33)

[8] Li J, Xu Z Y. A comparative study on sulfate reducing bacteria influenced corrosion of copper alloys [J]. J. Chin. Soc. Corros. Prot., 2007, 27(6): 342-347

    (李进, 许兆义. 硫酸盐还原菌对铜合金腐蚀电化学行为的影响 [J].中国腐蚀与防护学报, 2007, 27(6): 342-347)

[9] Huang G T, Chan K Y, Herbert H P. Microbiologically induced corrosion of 70Cu-30Ni alloy in anaerobic seawater [J].Electrochem. Soc., 2004, 151(7): B434-B439

[10] Shalaby H M, Hasan A A, Al-Sabti F. Effects of inorganic sulphide and ammonia on microbial corrosion behaviour of 70Cu-30Ni alloy in seawater [J]. Br.Corros. J., 1999, 34(4): 292-298

[11] Cao C N. Principle of Electrochemistry of Corrosion [M]. Beijing: Chemical Industry Press, 2004: 121

     (曹楚南. 腐蚀电化学原理 [M]. 北京: 化学工业出版社, 2004: 121)
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[3] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] 王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[5] 胥聪敏,罗立辉,王文渊,赵苗苗,田永强,宋鹏迪. D-tyrosine对碳钢表面铁细菌生物膜的杀菌增强作用机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 63-69.
[6] 卫晓阳,杨丽景,吕战鹏,郑必长,宋振纶. 磁场对纯Cu微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 484-494.
[7] 吴堂清,周昭芬,王鑫铭,张德闯,尹付成,孙成. 微生物致裂的热力学和动力学分析[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.
[8] 史显波,杨春光,严伟,徐大可,闫茂成,单以银,杨柯. 管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[9] 李鑫,陈旭,宋武琦,杨佳星,吴明. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[10] 管方, 翟晓凡, 段继周, 侯保荣. 阴极极化对硫酸盐还原菌腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(1): 1-10.
[11] 梅朦, 郑红艾, 陈惠达, 张鸣, 张大全. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[12] 陈菊娜,吴佳佳,王鹏,张盾. 脱硫弧菌和溶藻弧菌对船体结构材料907钢海水腐蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 402-410.
[13] 刘宏伟,刘宏芳. 铁氧化菌引起的钢铁材料腐蚀研究进展[J]. 中国腐蚀与防护学报, 2017, 37(3): 195-206.
[14] 吕亚林,郑碧娟,刘宏伟,熊福平,刘宏芳,胡裕龙. 磁场对硫酸盐还原菌生物膜在304不锈钢表面吸附性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 652-658.
[15] 李克娟, 郑碧娟, 陈碧, 刘宏芳. 磁场对Q235钢微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(6): 463-469.