Please wait a minute...
中国腐蚀与防护学报  2010, Vol. 30 Issue (2): 135-140    
  会议论文 本期目录 | 过刊浏览 |
几种催化裂化催化剂的磨损机制与动力学
吴俊升1;李晓刚1;公铭扬1;张志华1;2;郭金涛2
1. 北京科技大学新材料技术研究院 北京 100083
2. 中国石油大庆化工研究中心 大庆 163714
KINETICS AND MECHANISM OF ATTRITION OF SEVERAL FCC CATALYSTS
WU Junsheng1; LI Xiaogang1; GONG Mingyang1;ZHANG Zhihua1;2; GUO Jintao2
1. Institute of Advanced Materials;University of Science and Technology Beijing; Beijing 100083
2. PetroChina Daqing Research Center of Chemical Engineering; Daqing 163714
全文: PDF(1299 KB)  
摘要: 

催化剂磨损失效是流化催化裂化(FCC)过程中所面临的一个重要问题,磨损会造成催化剂跑剂和产品的污染。采用喷杯式(jet-cup) 流化磨损测试方法研究了炼油工业用几种不同抗磨性能FCC催化剂和添加剂的磨损规律,并探索了体系流体力学特性和颗粒自身性质对其磨损行为的影响。实验结果表明,不同粒径的催化剂颗粒具有不同的磨损行为;所有测试催化剂的磨损均由表面剥层磨损和体断裂磨损组成的混合磨损机制所支配;磨损的发展过程符合Gwyn磨损动力学方程,不同颗粒磨损规律的差别可由Gwyn方程的各参数来描述。

关键词 催化裂化催化剂磨损喷杯磨损测试    
Abstract

Catalyst attrition resistance is extremely important in the operation of fluid catalytic cracking (FCC) units because of potential problems with loss of catalyst and contamination of the subsequent products. Attrition behavior of several FCC catalysts and catalyst additives in oil refineries was investigated through lab-scale jet-cup test. The influences of ambient hydrodynamic parameters and material characteristic properties on particle attrition mechanism were mainly explored and clarified. The experimental results indicate that the particle size distribution has great influence on the attrition behavior of the catalysts tested, and a mixed attrition mechanism consisting of abrasion and fragmentation is identified for all the catalysts in terms of attrition loss rate evaluation, after-attrition morphology characterization and particle size distribution analysis. It is shown that the attrition of particles was found to evolute following Gwyn’s kinetic model and the difference of attrition mechanism of various particles can be categorized with parameters of the Gwyn equation.

Key wordsfluid catalytic cracking (FCC)    catalyst    attrition    jet-cup attrition test
收稿日期: 2009-10-30     
ZTFLH: 

TH117.3

 
基金资助:

中国石油天然气股份有限公司超前共性项目(W050508-03-01)和北京市教育委员会共建项目(SYS100080419)资助

通讯作者: 吴俊升     E-mail: wujs76@163.com
Corresponding author: WU Junsheng     E-mail: wujs76@163.com
作者简介: 吴俊升,男,1976年生,博士,副教授,研究方向为材料腐蚀与防护、新型功能材料制备等

引用本文:

吴俊升;李晓刚;公铭扬;张志华;郭金涛. 几种催化裂化催化剂的磨损机制与动力学[J]. 中国腐蚀与防护学报, 2010, 30(2): 135-140.
WU Jun-Sheng, LI Xiao-Gang, GONG Ming-Yang, ZHANG Zhi-Hua, GUO Jin-Shou. KINETICS AND MECHANISM OF ATTRITION OF SEVERAL FCC CATALYSTS. J Chin Soc Corr Pro, 2010, 30(2): 135-140.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2010/V30/I2/135

[1] Boerefijn R, Gudde N J, Ghadiri M. A review of attrition of fluid cracking catalyst particles [J]. Adv.Powder Technol., 2000, 11(2): 145-174
[2] Luo Y, Zhang R C. Control of catalyst abration and run-off happened in Jinmeng DCC unit [J]. Pet.Proc. Petrochem., 2001, 32(12): 25-27
    (罗勇, 张瑞驰.荆门催化裂解装置催化剂磨损和跑剂的控制 [J]. 石油炼制与化工,2001, 32(12): 25-27)
[3] Shi G J. Causes of catalyst run-off and countermeasures [J]. Pet. Refinery Eng., 2007, 37(3): 25-27
    (石功军. 催化裂化装置催化剂跑损量大的原因及解决措施 [J]. 炼油技术与工程, 2007, 37(3): 25-27)
[4] Ghadiri M, Ning Z, Kenter S J, et al.Attrition of granular solids in a shear cell [J].Chem. Eng. Sci.,2000, 55(22):5445-5456
[5] Zhao R, Goodwin J G, Jothimurugesan K, et al. Comparison of attrition test methods:ASTM standard fluidized bed vs. jet-cup [J]. Ind. Eng. Chem. Res., 2000, 39(5): 1155-1158
[6] Gong M Y, Li X G, Du W, et al. Research progress on fluid catalyst attrition [J]. Tribology, 2007, 27(1): 91-96
    (公铭扬, 李晓刚,杜伟等. 流化催化剂磨损机制的研究进展 [J]. 摩擦学学报, 2007, 27(1): 91-96)
[7] Weeks S A, Dumbill P. Methods speeds FCC catalyst attrition resistance determination [J]. Oil Gas J., 1990, 88(16): 38-40
[8] Mastellone M L, Arena U. Carbon attrition during the circulating fluidized bed combustion of a packaging-derived fuel [J].Combust. Flame, 1999, 117(3): 562-573
[9] Ray Y C, Jiang T S, Wen C Y.Particle attrition phenomena in a fluidized bed [J]. Powder Technol.,1987, 49(3): 193-206
[10] Werther J, Xi W. Jet attrition of catalyst particles in gas fluidized beds [J]. Powder Technol., 1993, 76(1): 39-46
[11] Neil A U,Bridgwater J. Towards a parameter characterizing attrition [J]. Powder Technol., 1999, 106(1): 37-44

[1] 陈嘉晨,王忠维,乔利杰,岩雨. 机械摩擦磨损与电化学腐蚀在特殊环境中的作用机制[J]. 中国腐蚀与防护学报, 2019, 39(5): 404-410.
[2] 余仁强,何建军,李微,任延杰,杨旺. 火电厂循环泵叶轮材料Cr30A在脱硫浆液腐蚀环境中的交互损伤失效行为研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 353-358.
[3] 陈磊,裴志亮,肖金泉,宫骏,孙超. 磁过滤电弧离子镀制备TiAlN涂层的结构与性能表征[J]. 中国腐蚀与防护学报, 2017, 37(3): 241-246.
[4] 陶永奇,刘刚,黎业生,曾志翔. 海水环境下2024铝合金腐蚀磨损性能研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 587-594.
[5] 刘胤, 刘时美, 于鲁萍, 刘军, 姜伟. 镁合金的腐蚀与微弧氧化膜层研究[J]. 中国腐蚀与防护学报, 2015, 35(2): 99-105.
[6] 陈君, 李全安, 张清, 王建章, 阎逢元. AISI 316不锈钢腐蚀磨损交互作用的研究[J]. 中国腐蚀与防护学报, 2014, 34(5): 433-438.
[7] 邢云颖, 刘智勇, 董超芳, 李晓刚. 16MnR钢在催化裂化再生环境中的应力腐蚀开裂研究[J]. 中国腐蚀与防护学报, 2014, 34(1): 59-64.
[8] 邝刘伟,范希梅,郝军,张会广. 化学镀Ni-B合金镀层性能[J]. 中国腐蚀与防护学报, 2011, 31(4): 315-318.
[9] 王蕾 胡道春. C/C复合材料抗电弧侵蚀性能研究[J]. 中国腐蚀与防护学报, 2009, 29(3): 235-240.
[10] 胡道春 孙乐民 上官宝. 动载荷条件下紫铜/铬青铜受流摩擦磨损性能[J]. 中国腐蚀与防护学报, 2009, 29(1): 35-39.
[11] 斯松华 . 激光功率对WCp / Ni基金属陶瓷涂层的组织与磨损性能的影响[J]. 中国腐蚀与防护学报, 2004, 24(3): 183-187 .
[12] 田兴玲; 林玉珍; 刘景军; 雍兴跃 . 碳钢在液/固双相管流中磨损腐蚀的电化学行为[J]. 中国腐蚀与防护学报, 2004, 24(1): 48-51 .
[13] 王飚; 王宇林; 张自华 . 电镀稀土铬提高水轮机的抗空蚀磨损能力[J]. 中国腐蚀与防护学报, 2003, 23(1): 34-37 .
[14] 翁永基; 李相怡 . 碳钢在含沙油田水中腐蚀-磨损交互作用研究[J]. 中国腐蚀与防护学报, 2000, 20(5): 281-286 .
[15] 王吉会;姜晓霞;李诗卓. 铜合金在3.5%NaCl+S~(2-)溶液中的腐蚀磨损行为[J]. 中国腐蚀与防护学报, 1997, 17(2): 81-86.