|
|
基于K-means++聚类算法和SSIM指标的金属板材腐蚀区域识别 |
龙梦翔, 付桂翠, 万博( ), 张钟庆 |
北京航空航天大学可靠性与系统工程学院 北京 100191 |
|
Corrosion Area Identification of Sheet Metal Based on K-means++ Clustering Algorithm and SSIM Index |
LONG Mengxiang, FU Guicui, WAN Bo( ), ZHANG Zhongqing |
School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China |
引用本文:
龙梦翔, 付桂翠, 万博, 张钟庆. 基于K-means++聚类算法和SSIM指标的金属板材腐蚀区域识别[J]. 中国腐蚀与防护学报, 2024, 44(2): 437-444.
Mengxiang LONG,
Guicui FU,
Bo WAN,
Zhongqing ZHANG.
Corrosion Area Identification of Sheet Metal Based on K-means++ Clustering Algorithm and SSIM Index[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 437-444.
1 |
Cao X L. Investigation of atmospheric corrosivity with ACM technology[D]. Wuhan: Academy of Machinery Science & Technology, 2005
|
1 |
曹献龙. ACM技术研究大气环境腐蚀严酷性[D]. 武汉: 机械科学研究院, 2005
|
2 |
Xu D, Yang X J, Li Q, et al. Review on corrosion test methods and evaluation techniques for materials in atmospheric environment[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 447
|
2 |
徐 迪, 杨小佳, 李 清 等. 材料大气环境腐蚀试验方法与评价技术进展[J]. 中国腐蚀与防护学报, 2022, 42: 447
|
3 |
Uhlig H H. The cost of corrosion to the United States[J]. Corrosion, 1950, 6: 29
doi: 10.5006/0010-9312-6.1.29
|
4 |
Fei Y W, Peng B, Xiao Y P. Review on the development of digital processing technology for metal corrosion images[J]. Dig. Technol. Appl., 2010, (11): 45
|
4 |
费逸伟, 彭 彬, 校云鹏. 金属腐蚀图像数字处理技术发展综述[J]. 数字技术与应用, 2010, (11): 45
|
5 |
Wang M H, Wang H, Liu R, et al. Research on image recognition for NiCrAlY Coating/N5 high-temperature alloy system based on deep learning method[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 583
|
5 |
王明好, 王 欢, 刘 叡 等. 基于深度学习方法的N5/NiCrAlY涂层图像识别的研究[J]. 中国腐蚀与防护学报, 2022, 42: 583
doi: 10.11902/1005.4537.2021.234
|
6 |
Tan C, Sun Y, Li G F, et al. Image segmentation technology based on genetic algorithm[A]. Proceedings of the 2019 3rd International Conference on Digital Signal Processing[C]. Jeju Island, Republic of Korea, 2019: 27
|
7 |
Lei F, Xiong J B, Zhang L, et al. Image enhancement algorithm in metal corrosion area[J]. CAAI Trans. Intell. Syst., 2019, 14: 385
|
7 |
雷 芳, 熊建斌, 张 磊 等. 金属腐蚀区域图像增强算法研究[J]. 智能系统学报, 2019, 14: 385
|
8 |
Li Z H, Zhang L, Wang J M, et al. Research on image acquisition and preprocessing method for visual measurement of pipeline inner surface corrosion[A]. 2017 13th IEEE International Conference on Electronic Measurement & Instruments (ICEMI)[C]. Yangzhou, China, 2017: 364
|
9 |
Zhu Z T, Mu Z T, Su W G, et al. Corrosion grade evaluation of aluminum alloy based on image processing technique[J]. J. Nanjing Univ. Aeronaut. Astronaut., 2010, 42: 383
|
9 |
朱做涛, 穆志韬, 苏维国 等. 基于图像处理技术的铝合金腐蚀等级评定方法[J]. 南京航空航天大学学报, 2010, 42: 383
|
10 |
Xu J, Luan Y H. Application of digital image processing technology in corrosion science[J]. Total Corros. Control, 2015, 29(1): 43
|
10 |
徐 健, 栾艳华. 数字图像处理技术在腐蚀科学中的应用研究[J]. 全面腐蚀控制, 2015, 29(1): 43
|
11 |
Nan C H. Research on corrosion mechanism and damage evaluation of ocean engineering materials based on image recognition[D]. Xi'an: Xi'an University of Technology, 2021
|
11 |
南翠红. 基于图像识别的海洋工程材料腐蚀机理及损伤评价研究[D]. 西安: 西安理工大学, 2021
|
12 |
Huang X B, Zhang X L, Zhang Y, et al. A method of identifying rust status of dampers based on image processing[J]. IEEE Trans. Instrum. Meas., 2020, 69: 5407
doi: 10.1109/TIM.19
|
13 |
Petricca L, Moss T, Figueroa G, et al. Corrosion detection using A. I: a comparison of standard computer vision techniques and deep learning model[A]. The Sixth International Conference on Computer Science, Engineering and Information Technology[C]. Viena, Austria, 2016
|
14 |
Zhou G Y, Zhang Z J, Yin W L, et al. Surface defect detection of CFRP materials based on infrared thermography and Attention U-Net algorithm[J]. Nondestruct. Test. Eval., doi: 10.1080/10589759.2023.2191954
|
15 |
Ibrahim A, Dalbah A, Abualsaud A, et al. Application of machine learning to evaluate insulator surface erosion[J]. IEEE Trans. Instrum. Meas., 2020, 69: 314
doi: 10.1109/TIM.19
|
16 |
Wang S S, Ma S J, Che K, et al. Application status of machine learning in field of natural environment corrosion assessment and prediction[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 441
|
16 |
王莎莎, 马帅杰, 车 琨 等. 机器学习在自然环境腐蚀评估与预测领域的应用现状[J]. 中国腐蚀与防护学报, 2023, 43: 441
doi: 10.11902/1005.4537.2022.147
|
17 |
Rahman A, Wu Z Y, Kalfarisi R. Semantic deep learning integrated with RGB feature-based rule optimization for facility surface corrosion detection and evaluation[J]. J. Comput. Civil Eng., 2021, 35: 4021018
doi: 10.1061/(ASCE)CP.1943-5487.0000982
|
18 |
MacQueen J. Classification and analysis of multivariate observations[A]. 5th Berkeley Symposium on Mathematical Statistics and Probability[C]. Los Angeles, USA, 1967: 281
|
19 |
Liu Y. Laryngoscope image classification by an improved convolutional neural network based on entropy weighted K-means clustering[D]. Changchun: Changchun University of Technology, 2022
|
19 |
刘 阳. 基于加权熵K-means聚类的改进卷积神经网络下喉镜图像分类研究[D]. 长春: 长春工业大学, 2022
|
20 |
Zhong J, Lin C, Sheng Z W, et al. Quantum K-means algorithm based on Hamming distance[J]. J. Comput. Appl., 2023, 43(8): 2493
|
20 |
钟 静, 林 晨, 盛志伟 等. 基于汉明距离的量子K-Means算法[J]. 计算机应用, 2023, 43(8): 2493
|
21 |
Arthur D, Vassilvitskii S. K-means++: The advantages of careful seeding[A]. Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms[C]. New Orleans, USA, 2006
|
22 |
Thorndike R L. Who belongs in the family?[J]. Psychometrika, 1953, 18: 267
doi: 10.1007/BF02289263
|
23 |
Rousseeuw P J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis[J]. J. Comput. Appl. Math., 1987, 20: 53
|
24 |
Tibshirani R, Walther G, Hastie T. Estimating the number of clusters in a data set via the gap statistic[J]. J. R. Stat. Soc., 2001, 63B: 411
|
25 |
Sugar C A, James G M. Finding the number of clusters in a dataset: An information-theoretic approach[J]. J. Am. Stat. Assoc., 2003, 98: 750
doi: 10.1198/016214503000000666
|
26 |
Hirsch R. Exploring Colour Photography: A Complete Guide[M]. Berlin: Laurence King Publishing, 2005
|
27 |
Wang Z, Bovik A C. Mean squared error: Love it or leave it? A new look at signal fidelity measures[J]. IEEE Signal Process. Mag., 2009, 26: 98
|
28 |
Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Trans. Image Process., 2004, 13: 600
doi: 10.1109/TIP.2003.819861
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|